Math, asked by jlokesh, 9 months ago

19. In S =
[2a + (n - 1) d), make d as the subject.

Answers

Answered by Rohith200422
2

Answer:

S_{n} =  \frac{n}{2} [2a + (n - 1)d]

Let \: S_{n} \: = \: Sum \: of \: 'n' \: terms, \: then

S_{n} \: = \: a \: + \: (a+d) \: + \: (a+2d) \: + \: (a+3d) \: + \: ...+ \: a+(n-1)d

Let l = last term, then,

S_{n}=a \: + \: (a+d) \: + \: (a+2d) \:  +  \: (a+3d) \: +...+ \: (l-3d) \: + \: (l -2d) \: + \: (l - d) \: + \: l

Now reversing the order of this gives:

S_{n} = l \: + \: (l-d) \: + \: (l-2d) \: + \: (l-3d) \: +...+ \: (a+3d) \: + \: (a +2d) \: +(a + d) \: + \: a

Adding these last two equations gives,

2 \times S_{n} =a \: + \: l \: + \: (a+l) \: + \: (a+l) \: + \: (a+l) \: + ...+ \: (a+l) \:  +  \: (a+l)  \: +  \: (a+l)  \: + \: ( a+l )

2 \times S_{n} =(a+l) \:  to \:  n  \: terms.

2 \times S_{n} =(a + l) \times n

S_{n} =  \frac{n}{2} (a + l)

but l = a+(n-1)d, so substituting this gives:

S =  \frac{n}{2}[2a + (n - 1)d ]

Similar questions