Math, asked by rahuls60, 1 year ago

19. Prove that:(1 + cot0 - cosec 0) (1 + tan0 + sec0) = 2
0 meant theta​

Answers

Answered by VISHNUKANTAIR
6

\huge\mathfrak{Answer:}

\huge\sf</strong><strong>\</strong><strong>u</strong><strong>n</strong><strong>d</strong><strong>e</strong><strong>r</strong><strong>l</strong><strong>i</strong><strong>n</strong><strong>e</strong><strong>{</strong><strong>G</strong><strong>i</strong><strong>v</strong><strong>e</strong><strong>n</strong><strong>}

(1 + cot \alpha  - cosec \alpha )(1 + tan \alpha  + sec \alpha ) = 2

\huge\sf</strong><strong>\</strong><strong>u</strong><strong>n</strong><strong>d</strong><strong>e</strong><strong>r</strong><strong>l</strong><strong>i</strong><strong>n</strong><strong>e</strong><strong>{solution:}

\huge\sf</strong><strong>\</strong><strong>u</strong><strong>n</strong><strong>d</strong><strong>e</strong><strong>r</strong><strong>l</strong><strong>i</strong><strong>n</strong><strong>e</strong><strong>{</strong><strong>S</strong><strong>o</strong><strong>l</strong><strong>v</strong><strong>i</strong><strong>n</strong><strong>g</strong><strong> </strong><strong>L</strong><strong>.</strong><strong> </strong><strong>H</strong><strong>.</strong><strong> </strong><strong>S</strong><strong>}

change \: tan \: in \: to \:  \frac{sin}{cos} or \: cot \: in \: to \:  \frac{cos}{sin}

 =  (1 +  \frac{cos \alpha }{ sin\alpha }  -  \frac{1}{ \sin \alpha  } )(1 +  \frac{ \sin \alpha  }{ \cos \alpha  }  +  \frac{1}{cos \alpha } )

 = ( \frac{sin + cos - 1}{sin} )( \frac{cos + sin + 1}{cos} )

using \: suitible \: identity

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =   \frac{ {(sin \alpha  + cos \alpha) }^{2} -  {1}^{2}  }{sin \alpha cos \alpha }

 =  \frac{{sin}^{2}  \alpha  +  {cos}^{2}  \alpha  + 2sin \alpha cos \alpha  - 1}{2sin \alpha cos \alpha }

using \: identity =  {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1

 =  \frac{1 - 1 + 2sin \alpha cos \alpha }{2sin \alpha  \: cos \alpha }

 =   \frac{2sin \alpha  \: cos \alpha }{ \sin \alpha  \cos \alpha  \alpha   }

 = 2

Answered by pinquancaro
2

Step-by-step explanation:

Given : Expression (1 + \cot \theta  - \csc \theta )(1 + \tan \theta  + \sec \theta ) = 2

To find : Prove the expression ?

Solution :

Taking LHS,

Using trigonometric properties,

\tan\theta=\frac{\sin\theta}{\cos\theta} \ or\  \cot =\frac{cos\theta}{sin\theta}

=  (1 + \frac{\cos \theta }{ \sin\theta}  -  \frac{1}{ \sin \theta} )(1 +  \frac{ \sin \theta }{ \cos \theta}  +  \frac{1}{cos \theta} )

= ( \frac{\sin \theta+ \cos\theta - 1}{sin} )( \frac{\cos\theta + \sin\theta + 1}{\cos\theta} )

Using algebraic identity, (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

=   \frac{ {(\sin \theta + \cos \theta) }^{2} -  {1}^{2}  }{\sin \theta \cos\theta } \\\\ =  \frac{{\sin\theta}^{2}  +  {\cos\theta}^{2} + 2\sin\theta \cos\theta- 1}{2\sin \theta \cos\theta }

Using {\sin}^{2}\theta+  {\cos}^{2}\theta= 1

=  \frac{1 - 1 + 2\sin \theta cos \theta }{2\sin \theta \cos\theta}\\\\ =   \frac{2\sin \theta cos \theta }{ \sin \theta \cos \theta } \\\\ = 2

#Learn more  

Prove this trigonometric identities

brainly.in/question/2708138

Similar questions