Math, asked by sandhumehak380, 2 months ago

19. Ritu can row downstream 20 km in 2 hours and upstream 4 km in4 hours. Find her speed of rowing

in still water and speed of current.​

Answers

Answered by Anonymous
19

Answer :

  • Ritu's speed of rowing in still water = 5 .5km/h
  • Speed of current = 4.5 km/h

Given :

  • Ritu can row downstream 20km in 2 hours and upstream 4km in 4 hours

To find :

  • Ritu's Speed of rowing in still water
  • Speed of current

Solution :

  • Let the speed of Ritu rowing in still water be x km/h
  • Let the speed of current be y km/h

Then,

  • Upstream = (x - y) km/h
  • Downstream = (x + y) km/h

According to question,  Given that ,

Ritu can row downstream 20km in 2 hours

  • 2(x + y) = 20

➞ 2(x + y) = 20

➞ x + y = 20/2

➞ x + y = 10

x + y = 10 .... equation (1)

Ritu can row upstream 4km in 4 hours

  • 4(x - y) = 4

➞ 4(x - y) = 4

➞ (x - y) = 4/4

➞ x - y = 1

x - y = 1 .... equation (2)

Equation are :

  • x + y = 10 ....(1)
  • x - y = 1 ....(2)

From equation (1)

➞ x + y = 10

➞ x = 10 - y

Now, putting x = 10 - y in equation (2) we get,

➞ x - y = 1

➞ (10 - y) - y = 1

➞ -2y = 1 - 10

➞ -2y = -9

➞ y = -9/-2

➞ y = 4.5

Now, putting y = 4.5 in equation (1) we get,

➞ x + y = 10

➞ x + 4.5 = 10

➞ x = 10 - 4.5

➞ x = 5.5

Hence,

  • Ritu's speed of rowing in still water = 5.5 km/h
  • Speed of current = 4.5 km/h
Answered by Anonymous
4

Given :

  • Ritu can row downstream 20 km in 2 hours and upstream 4 km in 4 hours.

Find :

  • Speed of rowing in still water and speed of current.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

Solution :

{ }

  • Let the speed of Ritu rowing in still water be x km/h.
  • Let the speed of current be y km/h.

{ }

Then,

{ }

  • Upstream = (x - y) km/h
  • Downstream = (x + y) km/h

{ }

\underline{\bigstar\:\boldsymbol{According \;to \;the\: given \;Question\; :}}

{ }

  • Ritu can row downstream 20 km in 2 hours.

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{2(x\:+\:y)\:=\:20}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:+\:y\:=\:{\dfrac{20}{2}}}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:+\:y\:=\:10}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{\bold{x\:+\:y\:=\:10}}\:{\blue{ ﹏﹏equ.1}}

{ }

Now,

{ }

  • Ritu can row upstream 4 km in 4 hours.

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{4(x\:-\:y)\:=\:4}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:-\:y\:=\:{\dfrac{4}{4}}}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:-\:y\:=\:1}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{\bold{x\:-\:y\:=\:1}}\:{\blue{ ﹏﹏equ.2}}

{ }

Now, we get equations are :

{ }

  • \sf\:{\bold{x\:+\:y\:=\:10}}\:{\blue{ ﹏﹏equ.1}}
  • \sf\:{\bold{x\:-\:y\:=\:1}}\:{\blue{ ﹏﹏equ.2}}

{ }

From equation 1 :

\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:+\:y\:=\:10}

\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:10\:-\:y}

{ }

Now, Putting x = 10 - y in equ.[ 2 ]

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:-\:y\:=\:1}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{(10\:-\:y)\:-\:y\:=\:1}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{-2y\:=\:1\:-\:10}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{-2y\:=\:-9}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{y\:=\:{\dfrac{-9}{-2}}}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{y\:=\:4.5}

{ }

Now, Putting y = 4.5 in equ.[ 1 ]

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:+\:y\:=\:10}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:+\:4.5\:=\:10}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:=\:10\:-\:4.5}

{ }

\:\:\:\:\::\:\Longrightarrow\sf\:{x\:=\:5.5}

{ }

Therefore,

{ }

  • \:\:{\sf{ Ritu's\:speed\:of\:rowing\:in\:still\:water\:is\:{\textsf{\textbf{5.5\:km/h }}}}}.
  • \:\:{\sf{ Speed\:of\:current\:is\:{\textsf{\textbf{4.5\:km/h }}}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

Similar questions