Math, asked by thamilavelg, 6 months ago

19. Solve (D2 + 7D + 12)y = 14e-3x​

Answers

Answered by Rameshjangid
0

The solution of the equation is y=Ae^{-4x} +Be^{-3x}+\frac{e^{-3x} }{3}

Given that (D^{2} +7D+12)y=14e^{-3x}

To solve this equation,

(D^{2} +7D+12)y=14e^{-3x}

First find the characteristic equation,

m^{2} +7m+12=0

Which impies, (m+4)(m+3)=0

That is, m=-4,m=-3

Therefore the characteristic function (C.F) is Ae^{-4x} +Be^{-3x}

To find the particular integral P.I,

P.I=\frac{1}{(D^{2} +7D+12)} 14e^{-3x}\\=\frac{14e^{-3x}}{(D+4)(D+3)}       [put D=a=3]

=\frac{14e^{-3x} }{(3+4)(3+3)} \\=\frac{14e^{-3x} }{7*6}\\ =\frac{e^{-3x}}{3}

The general solution= C.F+P.I

                                 =Ae^{-4x} +Be^{-3x}+\frac{e^{-3x} }{3}

For similar questions:

https://brainly.in/question/51893486

https://brainly.in/question/34705068

#SPJ1

Similar questions