Math, asked by vvb3105, 6 hours ago

19. The polynomial p(x) = 2x^3 + kx^2 – 3x + 5 and q(x) = x^3 + 2x^3 - x + k, when divided by (x - 2)
leave the same remainder r1 and r2 respectively. Find the value of k, if r1 - 12 = 0​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:p(x) =  {2x}^{3} +  {kx}^{2} - 3x + 5

and

\rm :\longmapsto\:q(x) =  {x}^{3} +  {2x}^{3} - x + k =  {3x}^{3} - x + k

Case :- 1

Given that when

\rm :\longmapsto\:p(x) \: is \: divided \: by \: (x - 2), \: it \: gives \: remainder \: r_1

We know,

Remainder Theorem states that if a polynomial f(x) is divided by linear polynomial (x - a), then remainder is f(a).

So,

\rm :\longmapsto\:r_1 = p(2)

\rm :\longmapsto\: r_1=  2{(2)}^{3} +  {k(2)}^{2} - 3(2) + 5

\rm :\longmapsto\: r_1=  16 +  4k -6 + 5

\rm :\longmapsto\: r_1=  15 +  4k -  -  - (1)

Case :- 2

Given that when

\rm :\longmapsto\:q(x) \: is \: divided \: by \: (x - 2), \: it \: gives \: remainder \: r_2

So, By Remainder Theorem,

\rm :\longmapsto\:r_2 = q(2)

\rm :\longmapsto\:r_2 =  {3(2)}^{3} - 2 + k

\rm :\longmapsto\:r_2 =  24- 2 + k

\rm :\longmapsto\:r_2 =  22 + k -  -  - (2)

Now,

According to statement,

\rm :\longmapsto\:r_1 - r_2 = 0

\rm :\longmapsto\:r_1 = r_2

\rm :\longmapsto\:15 + 4k = 22  + k

\rm :\longmapsto\:4k - k= 22  - 15

\rm :\longmapsto\:3k= 7

\bf\implies \:k = \dfrac{7}{3}

Additional Information :-

Factor theorem :-

This theorem states that if a polynomial f(x) is divided by linear polynomial (x - a), then f(a) = 0

Similar questions