1cube + 3 cube+ 5cube......+(2n-1)cube =n square (2n square -1)
Answers
Answered by
18
Hi,
Here is your answer !
_____________________________
Given series :
1³ + 3³ + 5³ + ... + (2n - 1)³
By Adding and subtracting
2³ + 4³ + 6³ +... + (2n)³ We get
1³ + 2³ + 3³ + ... + (2n-1)³ + (2n)³
- (2³ + 4³ + 6³ + ... + (2n)³)
= [ 2n(2n+1)/2 ]² - 2³[ 1³ + 2³ + 3³+ ... + (2n)³]
= [ n(2n + 1) ]² - 2³ [ n(n + 1)/2 ]²
= n²(2n+1)² - 2³ n²(n + 1)²/2²
= n²(2n + 1)² - 2n²(n + 1)²
= n² [ (2n + 1)² - 2(n + 1)² ]
= n² [ 4n² + 4n + 1 - 2n² - 4n - 2 ]
= n² (2n² - 1)
===============================
★ Formula Used :
Sum of cube of first n natural number
= [ n(n + 1)/2 ]²
Here is your answer !
_____________________________
Given series :
1³ + 3³ + 5³ + ... + (2n - 1)³
By Adding and subtracting
2³ + 4³ + 6³ +... + (2n)³ We get
1³ + 2³ + 3³ + ... + (2n-1)³ + (2n)³
- (2³ + 4³ + 6³ + ... + (2n)³)
= [ 2n(2n+1)/2 ]² - 2³[ 1³ + 2³ + 3³+ ... + (2n)³]
= [ n(2n + 1) ]² - 2³ [ n(n + 1)/2 ]²
= n²(2n+1)² - 2³ n²(n + 1)²/2²
= n²(2n + 1)² - 2n²(n + 1)²
= n² [ (2n + 1)² - 2(n + 1)² ]
= n² [ 4n² + 4n + 1 - 2n² - 4n - 2 ]
= n² (2n² - 1)
===============================
★ Formula Used :
Sum of cube of first n natural number
= [ n(n + 1)/2 ]²
Similar questions
Hindi,
7 months ago
Social Sciences,
7 months ago
Math,
7 months ago
English,
1 year ago
Chemistry,
1 year ago