1f sin A + COSA 7/5 and sin A cos A= 12/25, find the values of sin A and cos A.
Answers
Answer:
Step-by-step explanation:
Given,
sinA + cosA = 7/5
sinA.cosA = 12/25
To Find :-
Values of 'sinA' and 'cosA'
Formula Required :-
1) sin2A = 2sinAcosA
2) sin2A = 2tanA/1+tan^2A
3) Pythagoras theorem :-
(hypotenuse side)² = (opposite side)² + (adjacent side)²
4) tanA = opposite side/adjacent side
5) sinA = opposite side/hypotenuse side
6) cosA = adjacent side/hypotenuse side
Solution :-
sinA.cosA = 12/25
[Let it be equation - 1]
Multiplying with '2' for equation - 1
2 (sinA.cosA) = 2(12/25)
2sinAcosA = 24/25
sin2A = 24/25
[ ∴ sin2A = 2sinAcosA ]
[ ∴ sin2A = 2tanA/1 + tan²A ]
Cross multiplication :-
25(2tanA) = 24(1 + tan²A)
50tanA = 24 + 24tan²A
24tan²A - 50tanA + 24 = 0
2(12tan²A - 25tanA + 12) = 0
12tan²A - 25tanA + 12 = 0
Solving by using splitting the middle term process :-
12tan²A - 9tanA - 16tanA + 12 = 0
3tanA(4tanA - 3) - 4(4tanA - 3) = 0
Taking common :-
(4tanA - 3)(3tanA - 4) = 0
Equating both terms to '0' :-
4tanA - 3 = 0 , 3tanA - 4 = 0
4tanA = 3 , 3tanA = 4
tanA = 3/4 , tanA = 4/3
∴ tanA = 3/4 , 4/3
Finding value of 'sinA and cosA' if 'tanA = 3/4' :-
tanA = 3/4
opposite side/adjacent side = 3/4
→ opposite side = 3 , adjacent side = 4
Let, hypotenuse side = x
Applying Pythagoras theorem :-
(hypotenuse side)² = (opposite side)² + (adjacent side)²
(x)² = (3)² + (4)²
x^2 = 9 + 16
x^2 = 25
x = √25
x = 5
∴ Hypotenuse side = x = 5
sinA = opposite side/hypotenuse side
= 3/5
cosA = adjacent side/hypotenuse side
= 4/5
∴sinA = 3/5 , cosA = 4/5 [If and only if 'tanA = 3/4' ]
Finding value of 'sinA and cosA' if 'tanA = 4/3' :-
opposite side/adjacent side = 4/3
→ opposite side = 4 , adjacent side = 3
Let, hypotenuse side = x
Applying Pythagoras theorem :-
(hypotenuse side)² = (opposite side)² + (adjacent side)²
(x)^2 = (4)^2 + (3)^2
x^2 = 16 + 9
x^2 = 25
x = √25
x = 5
∴ Hypotenuse side = x = 5
sinA = opposite side/hypotenuse side
= 4/5
cosA = adjacent side/hypotenuse side
= 3/5
∴sinA = 4/5 , cosA = 3/5 [If and only if 'tanA = 4/3']
Given :-
Sin A + Cos A = 7/5 and Sin A Cos A = 12/25
To Find :-
Values of Sin A and Cos A
Used Concepts :-
- At First , according to the situation assume the equation/equations .
- All variables in the both equation are same . So find the value of one variable in terms of variable/variables .
- Substitute the value in 2nd equation .
- Find the value .
- Put the value in 1st equation and find the value of other variables .
- Done !
Solution :-
Let us assume that ,
Sin A + Cos A = 7/5 -------( i )
Sin A . Cos A = 12/25 -------( ii )
By ( ii ) ,
=> Sin A . Cos A = 12/25
=> Sin A = 12/25 Cos A
Put Sin A = 12/25 Cos A in ( i ) ,
=> 12/25 Cos A + Cos A = 12/25
=> 12 + 25 Cos²A/25 Cos A = 12/25
=> Doing Cross Multiplication ,
=> 5 ( 12 + 25 Cos²A ) = 7 ( 25 Cos A )
=> 60 + 125 Cos²A = 175 Cos A
=> 125 Cos²A - 175 Cos A + 60 = 0
=> You can see that it is of the form of a quadratic equation . Where ,
a = 125 , b = - 175 and c = 60
=> D = b² - 4ac = ( -175 )² - 4 × 125 × 60 = 30625 - 30000 = 625
=> √D = √625 = 25
Now Values of Cos A are given by the quadratic formula ,
=> Cos A = -b + √D/2a , -b - √D/2a
=> Cos A = - ( -175 ) + 25/2 × 125 , - ( -175 ) - 25/2 × 125
=> Cos A = 175 + 25/250 , 175 - 25/250
=> Cos A = 200/250 , 150/250
=> Cos A = 4/5 , 3/5
Now By ( i ) ,
=> When Cos A = 4/5
=> Sin A + Cos A = 7/5
=> Sin A + 4/5 = 7/5
=> Sin A = 7/5 - 4/5
=> Sin A = 3/5
=> When Cos A = 3/5
=> Sin A + Cos A = 7/5
=> Sin A + 3/5 = 7/5
=> Sin A = 7/5 - 3/5
=> Sin A = 4/5
=> Sin A = 4/5 , 3/5
Finally We get ,
Sin A = 3/5 , 4/5
Cos A = 4/5 , 3/5
Henceforth , Value of Sin A is 4/5 when value of Cos A is 3/5 , and value of Sin A is 3/5 when value of Cos A is 4/5 .