1f sin a + sin b = a and Cos a - Cos b = 5, then tan a-b/2
Answers
Explanation:
sinA+sinB=x
⇒2⋅sin(A+B2)⋅cos(A−B2)=x ...(1)
cosA+cosB=y
⇒2⋅cos(A+B2)⋅cos(A−B2)=y ...(2)
Now, we have to remove the term of sine and cosine value of (A+B2) to get the value of tan(A−B2).
From 1st equation,
⇒4⋅sin2(A+B2)⋅cos2(A−B2)=x2
⇒4⋅cos2(A−B2)⋅{1−cos2(A+B2)}=x2 ...(3)
Similarly, from 2nd equation,
⇒4⋅cos2(A+B2)⋅cos2(A−B2)=y2
⇒4⋅cos2(A+B2)⋅cos2(A−B2)=y2 ...(4)
From 3rd and 4th equation, we get
⇒4⋅cos2(A−B2)⋅⎧⎪⎨⎪⎩1−y24⋅cos2(A−B2)⎫⎪⎬⎪⎭=x2
⇒4⋅cos2(A−B2)−y2=x2
⇒4⋅cos2(A−B2)=x2+y2
⇒cos2(A−B2)=x2+y24
⇒sec2(A−B2)=4x2+y2
⇒1+tan2(A−B2)=4x2+y2
⇒tan2(A−B2)=4x2+y2−1
⇒tan2(A−B2)=4−x2−y2x2+y2
⇒tan(A−B2)=±√4−x2−y2x2+y2
Hope it helps
sinA+sinB=x
⇒2⋅sin(A+B2)⋅cos(A−B2)=x ...(1)
cosA+cosB=y
⇒2⋅cos(A+B2)⋅cos(A−B2)=y ...(2)
Now, we have to remove the term of sine and cosine value of (A+B2) to get the value of tan(A−B2).
From 1st equation,
⇒4⋅sin2(A+B2)⋅cos2(A−B2)=x2
⇒4⋅cos2(A−B2)⋅{1−cos2(A+B2)}=x2 ...(3)
Similarly, from 2nd equation,
⇒4⋅cos2(A+B2)⋅cos2(A−B2)=y2
⇒4⋅cos2(A+B2)⋅cos2(A−B2)=y2 ...(4)
From 3rd and 4th equation, we get
⇒4⋅cos2(A−B2)⋅⎧⎪⎨⎪⎩1−y24⋅cos2(A−B2)⎫⎪⎬⎪⎭=x2
⇒4⋅cos2(A−B2)−y2=x2
⇒4⋅cos2(A−B2)=x2+y2
⇒cos2(A−B2)=x2+y24
⇒sec2(A−B2)=4x2+y2
⇒1+tan2(A−B2)=4x2+y2
⇒tan2(A−B2)=4x2+y2−1
⇒tan2(A−B2)=4−x2−y2x2+y2
⇒tan(A−B2)=±√4−x2−y2x2+y2
Hope it helps