1f * (sqrt(5) + sqrt(3)) / (sqrt(5) - sqrt(3)) = a + b * sqrt(15) then find the values of a and b.
Answers
Appropriate Question :-
If then find the value of a and b.
Answer :-
- a = 4
- b = 1
Step by step explanation :-
Here, we cannot be directly solve the question we have first rationalize the denominator on LHS.
Using (a+b)² = a² + 2ab + b² in numerator and (a+b) (a-b) = a² - b² in the denominator.
Taking 2 common in numerator and denominator.
Comparing LHS and RHS,
On comparing both sides we get,
- a = 4
- b = 1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Appropriate Question :-
If \begin{gathered} \rm{ \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } =a + b \sqrt{15} } \\ \end{gathered}
5
−
3
5
+
3
=a+b
15
then find the value of a and b.
Answer :-
a = 4
b = 1
Step by step explanation :-
Here, we cannot be directly solve the question we have first rationalize the denominator on LHS.
\begin{gathered}\rm:\longmapsto{ \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } } \\ \\ \rm:\longmapsto{ \frac{( \sqrt{5} + \sqrt{3} )( \sqrt{5} + \sqrt{3} )}{( \sqrt{5} - \sqrt{3} )( \sqrt{5} + \sqrt{3} )} }\end{gathered}
:⟼
5
−
3
5
+
3
×
5
+
3
5
+
3
:⟼
(
5
−
3
)(
5
+
3
)
(
5
+
3
)(
5
+
3
)
Using (a+b)² = a² + 2ab + b² in numerator and (a+b) (a-b) = a² - b² in the denominator.
\begin{gathered}\rm:\longmapsto{ \frac{( \sqrt{5}) {}^{2} + 2( \sqrt{5} )( \sqrt{3} ) + ( \sqrt{3}) {}^{2} }{( \sqrt{5}) {}^{2} - ( \sqrt{3} ) {}^{2} } } \\ \\ \rm:\longmapsto{ \frac{5 + 2 \sqrt{15} + 3}{5 - 3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\\rm:\longmapsto{ \frac{8 + 2 \sqrt{15} }{2} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}
:⟼
(
5
)
2
−(
3
)
2
(
5
)
2
+2(
5
)(
3
)+(
3
)
2
:⟼
5−3
5+2
15
+3
:⟼
2
8+2
15
Taking 2 common in numerator and denominator.
\begin{gathered}\rm:\longmapsto{ \frac{ \cancel{2}(4 + \sqrt{15} )}{ \cancel{2}} } \\ \\\bf:\longmapsto \red{4 + \sqrt {15} } \: \: \: \: \end{gathered}
:⟼
2
2
(4+
15
)
:⟼4+
15
Comparing LHS and RHS,
\rm:\longmapsto{4 + \sqrt{15} = a + b \sqrt{15} }:⟼4+
15
=a+b
15
On comparing both sides we get,
a = 4
b = 1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬