Math, asked by khushi0675, 8 months ago

1f the zeroes of the quadratic polynomial x^2 + (a + 1) x + b are 2 and -3, then.. ​

Answers

Answered by dorgan399
95

\huge\bold{\pink{Q}\red{U}\blue{E}\green{S}\purple{T}\red{I}\pink{O}\blue{N}}

1f the zeroes of the quadratic polynomial x^2 + (a + 1) x + b are 2 and -3, then.. find a and b

\huge\bold{\purple{A}\red{N}\green{S}\pink{W}\orange{E}\blue{R}}

GIVEN

P(X)= X²+(a+1)X+b

ZEROES OF EQUATION ARE 2, (-3)

SUM OF ZEROES=2+(-3)=(-1)

AS WE KNOW THE SUM OF ZEROES IS

 =  \dfrac{ - </strong><strong>COEEFICIENT\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong> </strong><strong>OF\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong> X}{</strong><strong>COEEFICIENT\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong> OF  </strong><strong>\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong>{x}^{2} } \\  \\  =  \frac{ - (a + 1)}{1}  \\  \\

ACCORDING TO QUESTION

-(a+1)=(-1)

=>a+1=1

=>a=0

PRODUCT OF ZEROES=(-3×2)=(-6)

AS WE KNOW THAR PRODUCT OF ZEROES=

  = \dfrac{Constant}{COEEFICIENT </strong><strong>\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong>OF</strong><strong> </strong><strong>\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong> {x}^{2} } \\  \\  =  \dfrac{b}{1}

ACCORDING TO QUESTION

b=(-6)

THEREFORE, a=0, b=(-6)

Answered by aanya49531
61

Step-by-step explanation:

ZEROES OF EQUATION ARE 2, (-3)

SUM OF ZEROES=2+(-3)=(-1)

AS WE KNOW THE SUM OF ZEROES IS

 =  \dfrac{ - COEEFICIENT\:\: OF\:\: X}{COEEFICIENT\:\: OF  \:\:{x}^{2} } \\  \\  =  \frac{ - (a + 1)}{1}  \\  \\

ACCORDING TO QUESTION

-(a+1)=(-1)

=>a+1=1

=>a=0

PRODUCT OF ZEROES=(-3×2)=(-6)

AS WE KNOW THAR PRODUCT OF ZEROES=

  = \dfrac{Constant}{COEEFICIENT \:\:OF \:\: {x}^{2} } \\  \\  =  \dfrac{b}{1}

ACCORDING TO QUESTION

b=(-6)

THEREFORE, a=0, b=(-6)

Similar questions