1m
When semiconductor diode is reversed biased
The width of depletion region decreases
The width of depletion region increases
The width of depletion region remains unchanged
The width of depletion region is very small
Option :
Answers
Step-by-step explanation:
The width ._____________depletion region remains.
Step-by-step explanation:
5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
Given:−
</p><p>
The measures of two adjacent angles of a parallelogram are in the ratio 3:2.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
ToFind:−
</p><p>
Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
Solution:−
</p><p>
\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x
\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}
wehaveardjacentanglesofaparallelogram=180
\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered} \end{gathered}
puttingallvalues:
\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \ : \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180} {5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end {gathered} < /p > < p > < /p > < p > < /p > < p > \end{gathered}
→3x+2x=180
→ :5x=180
→x=
5
180
→x=
5
180
→x=36
</p><p></p><p></p><p>
\begin{gathered} < /p > < p > \begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered} \end{gathered}
</p><p>
→3x
→3×36
→108
→2x
→2×36
→72