Math, asked by amulya1138l, 9 months ago

1upon 1+xpowerm-n + 1upon 1+xpowerm-n =1​

Attachments:

Answers

Answered by naTEA
2

EXPLANATION.

1) = MODULUS FUNCTION.

A modulus function is a function which gives

the absolute value of a number Or variable.

it produces the magnitude of a number of

variable.

it is also known as absolute value fraction.

\bold{y \: = \: |i| = > \: \: ( \geqslant \:, 0)}y=∣i∣=>(⩾,0)

I is a variable.

Types of modulus inequality.

1) = General inequality.

\bold{= > \: \: \theta \: \geqslant 0 \: \: = \: | \theta| = \: \theta}=>θ⩾0=∣θ∣=θ

\bold{= > \: \: \theta \: \leqslant \: = | \theta | = - \theta}=>θ⩽=∣θ∣=−θ

TYPE = 2

\bold{= > \: \: |a| \geqslant 0}=>∣a∣⩾0

\bold{= > \: \: |a | = a \in \: r \: }=>∣a∣=a∈r

Case = 1

\bold{= > \: \: |a| = b \: \: \: if \: \: b < 0 = \phi}=>∣a∣=bifb<0=ϕ

\bold{= > \: \: b \geqslant 0 = n}=>b⩾0=n

\bold{|a| = b \: \: = a \: = \pm \: b \: \: if \: b \geqslant 0}∣a∣=b=a=±bifb⩾0

TYPE = 3

\bold{ \: |a| + |b| = |a \: + \: b| = ab \geqslant 0}∣a∣+∣b∣=∣a+b∣=ab⩾0

\bold{ |a| + |b| = |a \: - \: b| = ab \leqslant 0}∣a∣+∣b∣=∣a−b∣=ab⩽0

Similar questions