1upon 1+xpowerm-n + 1upon 1+xpowerm-n =1
Attachments:
Answers
Answered by
2
EXPLANATION.
1) = MODULUS FUNCTION.
A modulus function is a function which gives
the absolute value of a number Or variable.
it produces the magnitude of a number of
variable.
it is also known as absolute value fraction.
\bold{y \: = \: |i| = > \: \: ( \geqslant \:, 0)}y=∣i∣=>(⩾,0)
I is a variable.
Types of modulus inequality.
1) = General inequality.
\bold{= > \: \: \theta \: \geqslant 0 \: \: = \: | \theta| = \: \theta}=>θ⩾0=∣θ∣=θ
\bold{= > \: \: \theta \: \leqslant \: = | \theta | = - \theta}=>θ⩽=∣θ∣=−θ
TYPE = 2
\bold{= > \: \: |a| \geqslant 0}=>∣a∣⩾0
\bold{= > \: \: |a | = a \in \: r \: }=>∣a∣=a∈r
Case = 1
\bold{= > \: \: |a| = b \: \: \: if \: \: b < 0 = \phi}=>∣a∣=bifb<0=ϕ
\bold{= > \: \: b \geqslant 0 = n}=>b⩾0=n
\bold{|a| = b \: \: = a \: = \pm \: b \: \: if \: b \geqslant 0}∣a∣=b=a=±bifb⩾0
TYPE = 3
\bold{ \: |a| + |b| = |a \: + \: b| = ab \geqslant 0}∣a∣+∣b∣=∣a+b∣=ab⩾0
\bold{ |a| + |b| = |a \: - \: b| = ab \leqslant 0}∣a∣+∣b∣=∣a−b∣=ab⩽0
Similar questions