2.1
.!
21. If sin 0 = 3 then find the value of tan? 6 + cot? 0 ?
Answers
Answer:
\bold{\tan \theta+\cot \theta=1}, If the value of \bold{\sin \theta+\cos \theta=\sqrt{3}}
Given:
\sin \theta+\cos \theta=\sqrt{3}
To Prove:
\tan \theta+\cot \theta=1
Proof:
\sin \theta+\cos \theta=\sqrt{3}
Squaring of both sides, we get:
(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}
Using the formula (a+b)^{2}=a^{2}+b^{2}+2 a b
Applying formula in (\sin \theta+\cos \theta)^{2},
\begin{array}{l}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}
1+2sinθcosθ=3
2sinθcosθ=2
sinθcosθ=1 ______(1)
The value of the \sin \theta+\cos \theta=\sqrt{3}
is sinθcosθ=1
To prove:
tanθ+cotθ=1
L.H.S
tanθ+cotθ
Transforming the identity of tanθ ; cotθ into \frac{\sin \theta}{\cos \theta} ; \frac{\cos \theta}{\sin \theta}
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}
Substituting equation (1) we get
\begin{array}{l}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1}} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}
tanθ+cotθ=1=R.H.S
∴L.H.S=R.H.S
Hence proved
∴If \bold{\sin \theta+\cos \theta=\sqrt{3}} then \bold{\tan \theta+\cot \theta=1} .
Hope it helps you Mark as brainliest please