Math, asked by kingkumar5972, 9 months ago

(2^-1-3^-1)^1+ (6^-1 - 8^-1)^1​

Attachments:

Answers

Answered by shadowsabers03
5

We know that,

  • \displaystyle\sf {a^{-1}=\dfrac {1}{a}}

Thus we have,

  • \displaystyle\sf {2^{-1}=\dfrac {1}{2}}

  • \displaystyle\sf {3^{-1}=\dfrac {1}{3}}

  • \displaystyle\sf {6^{-1}=\dfrac {1}{6}}

  • \displaystyle\sf {8^{-1}=\dfrac {1}{8}}

So,

\displaystyle\sf{\longrightarrow(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=\left (\dfrac {1}{2}-\dfrac {1}{3}\right)^{-1}+\left (\dfrac {1}{6}-\dfrac {1}{8}\right)^{-1}}

\displaystyle\sf{\longrightarrow(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=\left (\dfrac {3-2}{2\times 3}\right)^{-1}+\left (\dfrac {8-6}{6\times8}\right)^{-1}}

\displaystyle\sf{\longrightarrow(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=\left (\dfrac {1}{6}\right)^{-1}+\left (\dfrac {2}{48}\right)^{-1}}

\displaystyle\sf{\longrightarrow(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=\left (\dfrac {1}{6}\right)^{-1}+\left (\dfrac {1}{24}\right)^{-1}}

\displaystyle\sf{\longrightarrow(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=6+24}

\displaystyle\sf{\longrightarrow\underline {\underline {(2^{-1}-3^{-1})^{-1}+(6^{-1}-8^{-1})^{-1}=30}}}

Hence 30 is the answer.

Answered by Itsvaidhehi
0

Answer:

30 is the correct answer

Similar questions