Math, asked by mohammadfarhandar68, 7 days ago

(2-¹+3-¹)-²
Sol of this qs​

Answers

Answered by BrainlySparrow
8

Step-by-step explanation:

Given Question :

 \sf \dashrightarrow( {2}^{ - 1}  +  {3}^{ - 1} ) {}^{ - 2}

Solution :

 \sf \dashrightarrow( {2}^{ - 1}  +  {3}^{ - 1} ) {}^{ - 2}

We know that,

 \sf \dashrightarrow {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

Using this,

 \sf \dashrightarrow \bigg(  \dfrac{1}{ {2}^{1} }  +   \dfrac{1}{  {3}^{1} }  {\bigg)}^{ - 2}

 \sf \dashrightarrow \bigg(  \dfrac{1}{ {2}^{} }  +   \dfrac{1}{  {3}^{} }  {\bigg)}^{ - 2}

Taking L.C.M.,

 \sf \dashrightarrow \bigg(  \dfrac{1 \times 3}{ {2 \times 3}^{} }  +   \dfrac{1 \times 2}{  {3 \times 2}^{} }  {\bigg)}^{ - 2}

 \sf \dashrightarrow \bigg(  \dfrac{3}{ {6}^{} }  +   \dfrac{2}{  {6}^{} }  {\bigg)}^{ - 2}

 \sf \dashrightarrow \bigg( \dfrac{3 + 2}{  {6}^{} }  {\bigg)}^{ - 2}

 \sf \dashrightarrow \bigg( \dfrac{5}{  {6}^{} }  {\bigg)}^{ - 2}

We know,

 \bf \dashrightarrow  \bigg (\dfrac{a}{b}  {\bigg)}^{ - c}  = \bigg (\dfrac{b}{a}  {\bigg)}^{ c}

Using this,

 \sf \dashrightarrow \bigg( \dfrac{6}{  {5}^{} }  {\bigg)}^{ 2}

 \sf \dashrightarrow \dfrac{6}{  {5}^{} }   \times  \dfrac{6}{5}

 \blue{ \sf \dashrightarrow  \boxed{ \bf\dfrac{36}{  {25}^{} }  } \:  \bigstar}

Similar questions