Math, asked by gk5657296, 4 months ago

(-2 1/8),-(-2 1/4),-(2.5),(- 2 1/4) order it largest to smallest

Answers

Answered by MasterDhruva
3

➤ Answer :-

\tt \longrightarrow -2 \dfrac{1}{8} \: ; \: 2 \dfrac{1}{4} \: ; \: (-2.5) \: ; \: - 2 \dfrac{1}{4}

Convert the decimal form to fractional form.........

\tt \longrightarrow -2 \dfrac{1}{8} \: ; \: 2 \dfrac{1}{4} \: ; \: \dfrac{( - 25)}{10} \: ; \: - 2 \dfrac{1}{4}

Convert all the mixed fractions to improper fractions...........

\tt \longrightarrow  \dfrac{(-17)}{8} \: ; \:  \dfrac{9}{4} \: ; \: \dfrac{( - 25)}{10} \: ; \: \dfrac{(- 9)}{4}

Convert them into like fractions by taking the LCM of the denominators i.e, 8, 10 and 4.........

We will do one by one.......

{\longrightarrow\tt\dfrac{(-17) \times 5}{8 \times 5} = \dfrac{(-85)}{40}}

{\longrightarrow\tt\dfrac{9 \times 10}{4 \times 10} = \dfrac{90}{40}}

{\longrightarrow\tt\dfrac{(-25) \times 4}{10 \times 4} = \dfrac{(-100)}{40}}

{\longrightarrow\tt\dfrac{(-9) \times 10}{4 \times 10} = \dfrac{(-90)}{40}}

We had converted them all into like fractions, now we can compare and arrange them in descending order.....

Descending order :-

{\tt\dfrac{90}{40} \: \boxed{>} \: \dfrac{(-85)}{40} \: \boxed{>} \: \dfrac{(-90)}{40} \: \boxed{>} \: \dfrac{(-100)}{40}}

When converted into lowest form :-

{\boxed{\tt 2 \dfrac{1}{4} \: \boxed{>} \: -2 \dfrac{1}{8} \: \boxed{>} \: -2 \dfrac{1}{4} \: \boxed{>} \: -2.5}}

━━━━━━━━━━━━━━━━━━━━━

More to know..................

  • While adding, subtracting, comparing, arranging the fractions in ascending and descending order or finding numbers between two rational numbers, if the given fractions are having different denominator i.e, if they are unlike fractions, we should convert them into like fractions by taking the LCM of the denominators.
  • While adding, subtracting, comparing, arranging the fractions in ascending and descending order or finding numbers between two rational numbers, if the given fractions are having same denominator i.e, if they are like fractions, we can solve them easily.
Similar questions