2
1.a)
Solve the D.E xp^2 +2yp + x = 0 for p.
Answers
Answer:
Simplifying
xp2 + -2yp + x = 0
Reorder the terms:
-2py + p2x + x = 0
Solving
-2py + p2x + x = 0
Solving for variable 'p'.
The solution to this equation could not be determined.
Step-by-step explanation:
Step-by-step explanation:
xp^2+2yp+x=0
p(xp+2y)=-x
xp+2y=-x/p
2y=-x/p-xp
2y=-x(1/p+p)
-2y/x=(1/p+p)
1/p(1+p^2)=-2y/x
equating 1/p and (1+p^2) to -2y/x
1/p=-2y/x
p=dy/dx
1/p=dx/dy
dx/dy=-2y/x
using variable seperable method
dy(-2y)=dx(x)
integrating on both sides we get
-y^2=x^2/2+c
x^2+2y^2=c--------(1)
(1+p^2)=-2y/x
p=dy/dx
(1+d^2y/dx)=-2y/x
d^2y/dx+2y/x=-1
It is in the form of linear differential equation
I.F=e^integration of 2/x
=e^2(logx) =x^2
soln: y.I.F=integration (q(x).I.F) dx
y.x^2=integration (-1).x^2 dx
y.x^2=-2x^3/3+c--------(2)
therefore the soln is either (1) or (2)