Math, asked by ritaarjun335, 11 days ago

(-2,-1) and (4,-5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC.

Answers

Answered by anindyaadhikari13
42

\textsf{\large{\underline{Solution}:}}

Given That:

\rm: \longmapsto Coordinates \: Of \: B = ( - 2 ,- 1)

\rm: \longmapsto Coordinates \: Of \:  D= (4 ,- 5)

Therefore:

 \rm: \longmapsto Slope \: of \: BD \: (m_{1}) =  \dfrac{ \Delta y}{ \Delta x}

 \rm: \longmapsto Slope \: of \: BD  \: (m_{1})=  \dfrac{ - 5 + 1}{4 + 2}

 \rm: \longmapsto  m_{1}=  \dfrac{ - 4}{6}

 \rm: \longmapsto  m_{1}=  \dfrac{ - 2}{3}

We know that: Diagonals of a rhombus bisect each other at right angle.

Therefore, the product of the slope of AC and BD is -1.

Let slope of AC be m.

Therefore:

 \rm: \longmapsto  mm_{1}=  - 1

 \rm: \longmapsto  m \times  \dfrac{ - 2}{3} =  - 1

 \rm: \longmapsto  m =\dfrac{3}{2}

Now, O is the midpoint of BD. Therefore:

\rm: \longmapsto Coordinates \: Of \:  O=  \bigg( \dfrac{ - 2 + 4}{2}  , \dfrac{ - 1 - 5}{2} \bigg )

\rm: \longmapsto Coordinates \: Of \:  O= (1 ,  - 3 )

Therefore, equation of line passing through (1, -3) with 3/2 as slope will be:

 \rm: \longmapsto (y - y_{1}) = m(x - x_{1})

 \rm: \longmapsto (y  + 3) =  \dfrac{3}{2} (x - 1)

 \rm: \longmapsto 2(y  + 3) = 3(x - 1)

 \rm: \longmapsto 2y  +6= 3x - 3

 \rm: \longmapsto 2y  =  3x - 9

 \rm: \longmapsto 3x - 2y - 9 = 0

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

1. Slope Intercept form.

\rm:\longmapsto y=mx+c

2. Point slope form.

\rm:\longmapsto y-y_{1}=m(x-x_{1})

3. Two point form.

\rm:\longmapsto y-y_{1}=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})

Attachments:

anindyaadhikari13: Thanks for the Brainliest :)
Similar questions