Math, asked by simonashahoon83, 5 hours ago

2 ( 1- sin^2theta) cos4theta =

[ Hint : write 1-sin^2theta=cos2 theta]​

Attachments:

Answers

Answered by ashblaze03
1

Answer:

3

Step-by-step explanation:

2(1-2sin^2\theta)cos4\theta \\= 2cos2\theta cos4\thetasince 1-sin^2x = cos2x

= cos6\theta + cos 2\theta since cos x + cos y = 2cos\frac{x+y}{2}cos\frac{x-y}{2}

Ignore the 2 before sin^2 \theta in the question, may be a printing error.

Mark as brainliest if it helps :D

Answered by mathdude500
8

 \green{\large\underline{\sf{Given \:Question - }}}

Evaluate

\rm :\longmapsto\:2(1 - 2 {sin}^{2} \theta)cos4\theta

\rm  \:  \:  \:  \:  \:  \:  \: \:(1) \: sin6\theta  + cos2\theta

\rm  \:  \:  \:  \:  \:  \:  \: \:(2) \: sin6\theta  + sin2\theta

\rm  \:  \:  \:  \:  \:  \:  \: \:(3) \: cos6\theta  + cos2\theta

\rm  \:  \:  \:  \:  \:  \:  \: \:(3) \: sin6\theta  + sin2\theta

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:2(1 - 2 {sin}^{2} \theta)cos4\theta

We know,

\red{ \boxed{ \sf{ \:1 -  {2sin}^{2}\theta  = cos2\theta }}}

So, using this identity, we get

\rm \:  =  \: 2 \: cos2\theta  \: cos4\theta

can be rewritten as

\rm \:  =  \: 2 \: cos4\theta  \: cos2\theta

We know,

\red{ \boxed{ \sf{ \:2cosx \: cosy = cos(x + y) + cos(x - y)}}}

So, using this identity, we get

\rm \:  =  \: cos(4\theta  + 2\theta ) + cos(4\theta  - 2\theta )

\rm \:  =  \: cos6\theta  \:  +  \: cos2\theta

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:2(1 - 2 {sin}^{2} \theta)cos4\theta = cos6\theta  +cos2 \theta}}}

  • So, option (3) is correct

Additional Information :-

\red{ \boxed{ \sf{ \:2sinxcosy = sin(x + y) + sin(x - y)}}}

\red{ \boxed{ \sf{ \:2sinxsiny = cos(x - y) - cos(x + y)}}}

\red{ \boxed{ \sf{ \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:cosx  -  cosy = -  \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:cosx  +  cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

Similar questions