Math, asked by siddu3526, 9 months ago

(√2+1) square
can you do it

Answers

Answered by BloomingBud
1

Answer:

3 + 2√2

Step-by-step explanation:

 {( \sqrt{2}  + 1)}^{2} \\  \\  =  {( \sqrt{2} )}^{2}  +  {(1)}^{2}  + 2  \times \sqrt{2}  \times 1 \\  \\ as \:  \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  = 2 + 1 + 2 \sqrt{2}  \\  \\  = 3 + 2 \sqrt{2}

Another method is in the attached image.

Attachments:
Answered by MяƖиνιѕιвʟє
42

\huge{\bold{\red{\underline{\overline{\mid{Solution}\mid}}}}}

We know that,

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

So,

  =  > {( \sqrt{2} + 1) }^{2}  \\   =  >  {( \sqrt{2} )}^{2}  +  {(1)}^{2}  + 2 \times  \sqrt{2}  \times 1 \\  =  > 2 + 1 + 2 \sqrt{2}

=> 3 + 2√2

Some more identities:-

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\  {(a - b)}^{2}  =  {a}^{2} +  {b}^{2}   - 2ab \\  \\  {(a}^{2}  -  {b}^{2} ) = (a + b)(a - b) \\  \\  {(a  + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) \\  \\  {(a - b)}^{3}  =  {a}^{ 3}  -  {b}^{3}  - 3ab(a - b)

Hope it helps u...

Similar questions