Math, asked by riyarajpopat12345, 1 month ago

(2) (√1
 \sqrt{15 -  \sqrt{5 {}^{2} } }
15 - √5 )^2​

Answers

Answered by Anonymous
0

Answer:

We know that,

( \sqrt{a} + \sqrt{b} ) {}^{2} = a + b + 2 \sqrt{ab}(

a

+

b

)

2

=a+b+2

ab

Now,

\sqrt{5} + 2 \sqrt{6} = a + b + 2 \sqrt{a}

5

+2

6

=a+b+2

a

\star \: a + b = \sqrt{5} \rightarrow \: ab = 6 \rightarrow \: a = 3 \: and \: b = 2⋆a+b=

5

→ab=6→a=3andb=2

5 + 2 \sqrt{6} = 3 + 2 + 2 \sqrt{} (3 \times 2)5+2

6

=3+2+2

(3×2)

5 + 2 \sqrt{6} = ( \sqrt{3} + \sqrt{2} ) {}^{2}5+2

6

=(

3

+

2

)

2

\therefore \: 5 + 2 \sqrt{6} = ( \sqrt{3} + \sqrt{2} )∴5+2

6

=(

3

+

2

)

Similarly,

\sqrt{8} - 2 \sqrt{15 } = a + b - 2 \sqrt{ab}

8

−2

15

=a+b−2

ab

\star \: a + b = 8 \rightarrow \: ab = 15 \rightarrow \: a = 5 \: and \: b = 3⋆a+b=8→ab=15→a=5andb=3

\sqrt{8} - 2 \sqrt{15} = 5 + 3 - 2 \sqrt{} (5 \times 3)

8

−2

15

=5+3−2

(5×3)

\sqrt{8} - 2 \sqrt{15 } = ( \sqrt{5} - \sqrt{3} ) {}^{2}

8

−2

15

=(

5

3

)

2

\sqrt{8} - 2 \sqrt{15} = ( \sqrt{5} - \sqrt{3} )

8

−2

15

=(

5

3

)

According to the question:

( \sqrt{5} + 2 \sqrt{6} )+ (\sqrt{8} - 2 \sqrt{15} )(

5

+2

6

)+(

8

−2

15

)

= \sqrt{3} + \sqrt{2} + \sqrt{5} - \sqrt{3}=

3

+

2

+

5

3

= \sqrt{2} + \sqrt{5}=

2

+

5

Similar questions