Math, asked by mrkwoledge7717, 1 year ago

2∫ 1/x(1+x²) dx ,Evaluate it.1

Answers

Answered by ranikumari4878
0

Answer:

The result is:

log(2)-\dfrac{1}{2}[log(5)-log(2)]

Step-by-step explanation:

Given:

\displaystyle\int_1^2 \dfrac{1}{x(1+x^2)}dx\\

Applying partial fraction decomposition method:

\dfrac{1}{x(1+x^2)}=\dfrac{A(1+x^2)+(Bx+C)(x)}{x(1+x^2)}\\\dfrac{1}{x(1+x^2)}=\dfrac{A}{x}+\dfrac{Bx+C}{(1+x^2)}\\1=A+Ax^2+Bx^2+Cx\\

Comparing the coefficients of x^2 on both side of the above equation we get:

Ax^2+Bx^2=0\\A+B=0\,\,\,\,\,eqn(1)

Now comparing the coefficients of x from both side of the given equation we get:

Cx=0\\C=0

And by comparing the constant terms we get:

A=1

Hence substituting the value of A in eqn(1) we get:

A+B=0

1+B=0

B=-1

Therefore integrating by substituting the above values:

\displaystyle\int_1^2 \dfrac{1}{x(1+x^2)}dx=\displaystyle\int_1^2\dfrac{1}{x}dx+\displaystyle\int _1^2\dfrac{-1x+0}{1+x^2}dx\\\displaystyle\int_1^2 \dfrac{1}{x(1+x^2)}dx=\displaystyle\int_1^2 \dfrac{1}{x}dx-\displaystyle\int _1^2\dfrac{1x}{1+x^2}dx\\

Let:

1+x^2=z

Differentiating with respect to x.

2x\,dx=dz

Or,

x\,dx=\dfrac{dz}{2}

Substituting for the value of limits:

Lower limit

When x=1

z=1+1\\z=2\\

Upper limit:

When x=2

z=1+2^2\\z=5

\displaystyle\int_1^2 \dfrac{1}{x(1+x^2)}dx=\displaystyle\int _1^2\dfrac{1}{x}dx-\displaystyle\int_2^5 \dfrac{1}{z}\times \dfrac{dz}{2}

=[log(x)}]_1^2-\dfrac{1}{2}[log(z)]_2^5\\=[log(2)-log(1)]-\dfrac{1}{2}[log(5)-log(2)]\\=log(2)-\dfrac{1}{2}[log(5)-log(2)]

Similar questions