Math, asked by TbiaSupreme, 1 year ago

2ˣ + 1/√x²-9,Integrate the given function w.r.t. x considering them well defined and integrable over proper domain.

Answers

Answered by abhi178
8
we have to integrate \int{\frac{2x+1}{\sqrt{x^2-9}}}\,dx

\int{\frac{2x+1}{\sqrt{x^2-9}}}\,dx

= \int{\frac{2x}{\sqrt{x^2-9}}}\,dx+\int{\frac{1}{\sqrt{x^2-9}}}\,dx

if we assume f(x) = x² - 9 , then f'(x) = 2x
hence, \int{\frac{2x}{\sqrt{x^2-9}}}\,dx=\int{\frac{f'(x)}{\sqrt{f(x)}}}\,dx
we know, \int{\frac{f'(x)}{\sqrt{f(x)}}}\,dx=2\sqrt{f(x)}

and also we know,
\int{\frac{1}{\sqrt{x^2-a^2}}}\,dx=log|\sqrt{x^2-a^2}+x|


now, 2\sqrt{x^2-9}+log|\sqrt{x^2-9}+x|+C
Similar questions