Math, asked by yashvantatulkar2, 11 months ago

2. ₹ 15000 की धनराशि पर 2 वर्ष में उपार्जित वार्षिक रूप से
संयोजित चक्रवृद्धि ब्याज तथा साधारण ब्याज का अन्तर ₹ 96 है.
इस पर ब्याज की वार्षिक दर कितनी है?​

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Rate\%=8\%}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :}} \\   \tt:  \implies Principal(p) = 15000  \: rupees \\  \\  \tt: \implies  Time(t) = 2 \: years \\  \\  \tt : \implies C.I- S.I= 96 \: rupees \\  \\ \red{ \underline \bold{To \: Find :}} \\  \tt:  \implies Rate\% = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\  \tt:  \implies S.I =  \frac{15000 \times r \times 2}{100}  \\  \\   \green{\tt:  \implies S.I= 300 \: r} -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{r}{100} )^{t}  \\  \\  \tt:  \implies A=p(1 +  \frac{r}{100} ) ^{2}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies C.I = A - p \\  \\  \tt:  \implies C.I= p(1 +  \frac{r}{100} )^{2}   - p -  -  -  -  - (2) \\  \\  \bold{difference :  }  \\  \tt:  \implies C.I- S.I = 96 \\  \\  \tt:  \implies p(1 +  \frac{r}{100} )^{2}  - p  - 300r = 96 \\  \\  \tt:  \implies 15000(  \frac{100 + r}{100} )^{2}  - 15000 - 300r = 96 \\  \\  \tt:  \implies 1.5(100 + r)^{2}  - 15000 - 300r = 96 \\  \\  \tt:  \implies 1.5(10000 +  {r}^{2}  + 200r) - 15000 - 300r = 96 \\  \\  \tt:  \implies 15000 + 1.5 {r}^{2}  + 300r  - 15000 - 300r = 96 \\  \\  \tt:  \implies 1.5 {r}^{2}  = 96 \\  \\  \tt:  \implies  {r}^{2}  =  \frac{96}{1.5}  \\  \\  \tt:  \implies  {r} =  \sqrt{64}  \\  \\   \green{\tt:  \implies r = 8 \%}

Similar questions