Math, asked by surajsinghyadav281, 6 months ago

2
2.19 If x +y =12 and xy =14, find the value of (x+​

Answers

Answered by Mister360
3

Step-by-step explanation:

Given:-

x+y=12 , xy=14

To find :-

value of x+y)^2

Solution

(x + y) = 12 \\  =  >  {(x +y )}^{2}  = 12 \\  =  >  { x }^{2}  + 2xy +  {y}^{2}  = 12 \\  =  >  {x}^{2}  +  {y}^{2}   + 2xy= 12 \\  =  >  {x}^{2}  +  {y}^{2}  + 2(14) = 12 \\  =  >  {x}^{2}  +  {y}^{2}  + 28 = 12 \\  =  >  {x}^{2}  +  {y}^{2}  = 12 - 28 \\  =  - 16 \\  =  > (x + y)(x + y) =  - 16 \\  =  > 12  \times 12 =  - 16 \\  =  > 144 =  - 16 \\  =  > x + y =  \frac{144}{ - 16}  \\  =  - 9

Similar questions