Math, asked by Lakeesha, 5 months ago

(√2-2)² = 2 + 4 - 4√2 = 6 - 4√2

(√2+√3)² = 2 + 3 + 2√6 =
5 + √6

Can anyone please explain this briefly
It's urgent!
any unwanted will be reported​

Answers

Answered by Anonymous
7

(1.) :-

by \: using \: (a -  {b)}^{2}  =   {a}^{2}   +  {b}^{2}  - 2ab

( \sqrt{2  } -  {2})^{2} </p><p></p><p> = ( { \sqrt{2}) }^{2}  + ( {2})^{2}  - 2 \times  \sqrt{2}  \times 2

= (√2-2)² = 2 + 4 - 4√2

= 6 - 4√2

(2.):-

(√2+√3)² = 2 + 3 + 2√6 =

5 + √6

by using (a+b)² = a² + b² + 2ab

(√2+√3)²

=(√2)² +(√3)² +2×√2×√3

=2 + 3 + 2√6

= 5 + √6

hope it is helpful for you

Answered by Expert0204
6

\huge\tt\underline\red{Que}\underline {s}\underline\purple{tio}\underline{n}\orange {:}

 \tt ⟹(\sqrt{2}-2)²

\huge \underbrace \mathfrak \red{\bigstar Explanation}

Question number 1:

 \tt ⟹(\sqrt{2}-2)²

 \tt \boxed {\green{By \:using \:identity\: (a-b)² =a²+b²-2ab}}

 \tt ⟹(\sqrt{2})²+(2)²-2(\sqrt{2})(2)

 \tt ⟹2+4-4\sqrt{2}

 \tt ⟹6 -4\sqrt{2}

Now, Question number 2:

 \tt ⟹(\sqrt{2}+\sqrt{3})²

 \tt \boxed {\green{By \:using \:identity\: (a+b)² =a²+b²+2ab}}

 \tt ⟹(\sqrt{2})²+(\sqrt{3})²+2(\sqrt{2}) (\sqrt{3})

 \tt ⟹2 + 3 + 2\sqrt{6}

 \tt ⟹5 + 2\sqrt{6}

Hope it will help you

plz brainlist

Similar questions