Math, asked by varun10vikash, 2 months ago

2√2√2√729 = p then the value of p^20/162+5/2​

Answers

Answered by vigneshwar2096
0

Step-by-step explanation:

2√2√2√729 = p then the value of p^20/162+5/2

Answered by pulakmath007
0

\displaystyle \sf{ \frac{ {p}^{20} }{162} + \frac{5}{2} } = \bf 4

Given :

\displaystyle \sf{ \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } = p }

To find :

The value of

\displaystyle \sf{ \frac{ {p}^{20} }{162} + \frac{5}{2} }

Solution :

Step 1 of 3 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } = p }

Step 2 of 3 :

Find the value of p

\displaystyle \sf{ \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } = p }

\displaystyle \sf{ \implies p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } }

\displaystyle \sf{ \implies p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{9 \times 9 \times 9} } } }

\displaystyle \sf{ \implies p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{ {9}^{3} } } } }

\displaystyle \sf{ \implies p = \sqrt[4]{ \sqrt[2]{ 9 } } }

\displaystyle \sf{ \implies p = \sqrt[4]{ \sqrt[2]{ {3}^{2} } } }

\displaystyle \sf{ \implies p = \sqrt[4]{ 3 } }

\displaystyle \sf{ \implies {p}^{4} = 3 }

\displaystyle \sf{ \implies p =  {3}^{ \frac{1}{4} } }

Step 3 of 3 :

Find the value of the expression

\displaystyle \sf{ \frac{ {p}^{20} }{162} + \frac{5}{2} }

\displaystyle \sf{ = \frac{{ ({p}^{4} )}^{5} }{162} + \frac{5}{2} }

\displaystyle \sf{ = \frac{{ (3)}^{5} }{162} + \frac{5}{2} }

\displaystyle \sf{ = \frac{81 \times 3 }{162} + \frac{5}{2} }

\displaystyle \sf{ = \frac{ 3 }{2} + \frac{5}{2} }

\displaystyle \sf{ = \frac{ 3 + 5 }{2} }

\displaystyle \sf{ = \frac{ 8 }{2} }

\displaystyle \sf{ = 4 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

Similar questions
Math, 10 months ago