Math, asked by dheershah94, 1 month ago

(2+√2)²rational or irrational​

Answers

Answered by Yugant1913
8

\huge\boxed{\underline{\bf { \red S \green o \pink L \blue u \orange T \purple i\red O \pink n \green{..}}}}

Step-by-step explanation:

Given,   {( \sqrt{2}  - 2)}^{2}

To find

  • Rational or irrational

\sf\mathbb\color{red} {solution}

\sf\mathbb\color{blue} { given \: = ( {( \sqrt{2} - 2) }^{2} }

\sf\mathbb\color{blue} { = {( \sqrt{2}) }^{2}   - 2 \times  \sqrt{2} \times 2 +  {2}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{yellow} { [By  \: algebraic \:  identity, }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{yellow} { {(x - y) }^{2}  =  {x}^{2}  - 2xy +  {y}^{2}] }

\sf\mathbb\color{blue} { = 2   - 4 \sqrt{2} + 4 }

\sf\mathbb\color{blue} { = 6 - 4 \sqrt{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{pink} {[irrational \: number \: ] }

Therefore,

 \:  \: \sf\mathbb\color{purple} { {( \sqrt{2} - 2) }^{2} is \: an \: irrational \: number \: }

___________________________________

Formula used

\sf\mathbb\color{red} { {( {a}  - b)}^{2} =  {a}^{2} - 2ab +  {b}^{2}   }

Similar questions