Math, asked by divyarawat05258, 4 months ago

2-2+4+04×45+34+÷53@÷4​

Answers

Answered by aakarshmall8
1

49jskdkkcjvvjgnbfdj9saokxncncnfndn

Answered by namitha12346
1

Answer:

2+13=15, 2+17=19, 2+19=21, 2+23=25, 2+29=31, 2+31=33, 2+37=39, 2+41=43, 2+43=45, 2+47=49, 2+53=55, 2+59=61, 2+61=63, 2+67=69, 2+71=73, 2+73=75, 2+79=81, 2+83=85, 2+89=91, 2+97=99, 3+2=5, 3+3=6, 3+5=8, 3+7=10, 3+11=14, 3+13=16, 3+17=20, 3+19=22, 3+23=26, 3+29=32, 3+31=34, 3+37=40, 3+41=44, 3+43=46, 3+47=50, 3+53=56, 3+59=62, 3+61=64, 3+67=70, 3+71=74, 3+73=76, 3+79=82, 3+83=86, 3+89=92, 5+2=7, 5+3=8, 5+5=10, 5+7=12, 5+11=16, 5+13=18, 5+17=22, 5+19=24, 5+23=28, 5+29=34, 5+31=36, 5+37=42, 5+41=46, 5+43=48, 5+47=52, 5+53=58, 5+59=64, 5+61=66, 5+67=72, 5+71=76, 5+73=78, 5+79=84, 5+83=88, 5+89=94, 7+2=9, 7+3=10, 7+5=12, 7+7=14, 7+11=18, 7+13=20, 7+17=24, 7+19=26, 7+23=30, 7+29=36, 7+31=38, 7+37=44, 7+41=48, 7+43=50, 7+47=54, 7+53=60, 7+59=66, 7+61=68, 7+67=74, 7+71=78, 7+73=80, 7+79=86, 7+83=90, 7+89=96, 11+2=13, 11+3=14, 11+5=16, 11+7=18, 11+11=22, 11+13=24, 11+17=28, 11+19=30, 11+23=34, 11+29=40, 11+31=42, 11+37=48, 11+41=52, 11+43=54, 11+47=58, 11+53=64, 11+59=70, 11+61=72, 11+67=78, 11+71=82, 11+73=84, 11+79=90, 11+83=94, 13+2=15, 13+3=16, 13+5=18, 13+7=20, 13+11=24, 13+13=26, 13+17=30, 13+19=32, 13+23=36, 13+29=42, 13+31=44, 13+37=50, 13+41=54, 13+43=56, 13+47=60, 13+53=66, 13+59=72, 13+61=74, 13+67=80, 13+71=84, 13+73=86, 13+79=92, 13+83=96, 17+2=19, 17+3=20, 17+5=22, 17+7=24, 17+11=28, 17+13=30, 17+17=34, 17+19=36, 17+23=40, 17+29=46, 17+31=48, 17+37=54, 17+41=58, 17+43=60, 17+47=64, 17+53=70, 17+59=76, 17+61=78, 17+67=84, 17+71=88, 17+73=90, 17+79=96, 19+2=21, 19+3=22, 19+5=24, 19+7=26, 19+11=30, 19+13=32, 19+17=36, 19+19=38, 19+23=42, 19+29=48, 19+31=50, 19+37=56, 19+41=60, 19+43=62, 19+47=66, 19+53=72, 19+59=78, 19+61=80, 19+67=86, 19+71=90, 19+73=92, 19+79=98, 23+2=25, 23+3=26, 23+5=28, 23+7=30, 23+11=34, 23+13=36, 23+17=40, 23+19=42, 23+23=46, 23+29=52, 23+31=54, 23+37=60, 23+41=64, 23+43=66, 23+47=70, 23+53=76, 23+59=82, 23+61=84, 23+67=90, 23+71=94, 23+73=96, 29+2=31, 29+3=32, 29+5=34, 29+7=36, 29+11=40, 29+13=42, 29+17=46, 29+19=48, 29+23=52, 29+29=58, 29+31=60, 29+37=66, 29+41=70, 29+43=72, 29+47=76, 29+53=82, 29+59=88, 29+61=90, 29+67=96, 31+2=33, 31+3=34, 31+5=36, 31+7=38, 31+11=42, 31+13=44, 31+17=48, 31+19=50, 31+23=54, 31+29=60, 31+31=62, 31+37=68, 31+41=72, 31+43=74, 31+47=78, 31+53=84, 31+59=90, 31+61=92, 31+67=98, 37+2=39, 37+3=40, 37+5=42, 37+7=44, 37+11=48, 37+13=50, 37+17=54, 37+19=56, 37+23=60, 37+29=66, 37+31=68, 37+37=74, 37+41=78, 37+43=80, 37+47=84, 37+53=90, 37+59=96, 37+61=98, 41+2=43, 41+3=44, 41+5=46, 41+7=48, 41+11=52, 41+13=54, 41+17=58, 41+19=60, 41+23=64, 41+29=70, 41+31=72, 41+37=78, 41+41=82, 41+43=84, 41+47=88, 41+53=94, 43+2=45, 43+3=46, 43+5=48, 43+7=50, 43+11=54, 43+13=56, 43+17=60, 43+19=62, 43+23=66, 43+29=72, 43+31=74, 43+37=80, 43+41=84, 43+43=86, 43+47=90, 43+53=96, 47+2=49, 47+3=50, 47+5=52, 47+7=54, 47+11=58, 47+13=60, 47+17=64, 47+19=66, 47+23=70, 47+29=76, 47+31=78, 47+37=84, 47+41=88, 47+43=90, 47+47=94, 53+2=55, 53+3=56, 53+5=58, 53+7=60, 53+11=64, 53+13=66, 53+17=70, 53+19=72, 53+23=76, 53+29=82, 53+31=84, 53+37=90, 53+41=94, 53+43=96, 59+2=61, 59+3=62, 59+5=64, 59+7=66, 59+11=70, 59+13=72, 59+17=76, 59+19=78, 59+23=82, 59+29=88, 59+31=90, 59+37=96, 61+2=63, 61+3=64, 61+5=66, 61+7=68, 61+11=72, 61+13=74, 61+17=78, 61+19=80, 61+23=84, 61+29=90, 61+31=92, 61+37=98, 67+2=69, 67+3=70, 67+5=72, 67+7=74, 67+11=78, 67+13=80, 67+17=84, 67+19=86, 67+23=90, 67+29=96, 67+31=98, 71+2=73, 71+3=74, 71+5=76, 71+7=78, 71+11=82, 71+13=84, 71+17=88, 71+19=90, 71+23=94, 73+2=75, 73+3=76, 73+5=78, 73+7=80, 73+11=84, 73+13=86, 73+17=90, 73+19=92, 73+23=96, 79+2=81, 79+3=82, 79+5=84, 79+7=86, 79+11=90, 79+13=92, 79+17=96, 79+19=98, 83+2=85, 83+3=86, 83+5=88, 83+7=90, 83+11=94, 83+13=96, 89+2=91, 89+3=92, 89+5=94, 89+7=96, and 97+2=99

The numbers less than 100 that are not prime sums are:

11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53, 57, 59, 65, 67, 71, 77, 79, 83, 87, 89, 93, 95, and 97

Since these sums are all odd, we know that one of the numbers must be odd and one must be even, and from Bar's second statement, we know that any factorization pair where the sum is not in this list is eliminated, e.g., X*Y=12 has factors 2*6 and 3*4, but neither sums 8 or 7 are on the list.

Step-by-step explanation:

mark me as brilliant and thank my all Answers

Similar questions