Math, asked by aashu3689, 10 months ago

2.2 Factorize the following by Factor theorem:
(a)x^3+9x^2+23x+15​

Answers

Answered by parasbhumbak3
8

Answer is in the photo check it out....

HOPE IT WILL HELP ☺

#STAY HOME #STAY SAFE

Attachments:
Answered by MisterIncredible
13

Given :-

Cubic expression ;

p ( x ) = x³ + 9x² + 23x + 15

Required to find :-

  • Factorised form of the given expression ?

Method used :-

  • Performing long division by dividing the expression with one of its factor and Factorise the quotient

Concept used :-

  • Factor theorem

Solution :-

Given :-

p ( x ) = x³ + 9x² + 23x + 15

We need to Factorise this above expression

So,

Let assume that ( x + 1 ) is the factor of p ( x )

Using factor theorem !

Let,

=> x + 1 = 0

=> x = - 1

Substitute this value in place of x in p ( x )

So,

p ( - 1 ) =

( - 1 )³ + 9 ( - 1 )² + 23 ( - 1 ) + 15 = 0

- 1 + 9 ( 1 ) - 23 + 15 = 0

- 1 + 9 - 23 + 15 = 0

- 24 + 24 = 0

- 24 & + 24 get cancelled due to opposite signs

0 = 0

LHS = RHS

Hence, our assumption is correct .

( x + 1 ) is the factor of p ( x )

Now,

perform long division by dividing p ( x ) with ( x + 1 )

Since, x + 1 is the factor of p ( x )

So,

 \tt x \ + 1\big) {x}^{3}  + 9 {x}^{2}  + 23x + 15 \big( {x}^{2}  + 8x  + 15\\  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \tt  {x}^{3}  + 1 {x}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{ (-) \: (-) \:  \:  \:  \:  \:  \:  \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \: \tt  \:  \:  \: +  \: 8 {x}^{2}  + 23x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt + 8 {x}^{2} \:   +    \:  \:  \: 8x  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ (-) \:  \:  \:  \:  \:    ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:    \tt  + 15x + 15 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt  + 15x + 15 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ ( - ) \:  \:  \:  \: ( - ) \:  \:  \:  \:  \:  \:  \:  \:} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \huge{  0} \:  \:  \:  \:  \: }

On performing long division ;

We get the quotient as x² + 8x + 15

Now,

We need to Factorise the quotient in order to find the other 2 factors

So,

  \rightarrowtail \rm \: {x}^{2}  + 8x + 15 \:  \\   \\  \rightarrowtail \rm \:  {x}^{2}  + 5x + 3x + 15 \:  \\  \\  \rightarrowtail \rm \: x(x + 5) + 3(x + 5) \\  \\  \rightarrowtail \rm \: (x + 5)(x + 3)

Hence,

 \tt {factors \: of \: p(x)} \begin{cases} \rm (x + 1) \\  \tt(x + 5) \\  \sf(x + 3) \end{cases}

Therefore,

x³ + 9x² + 23x + 15 is factorised into 3 factors i.e. ( x + 1 ) ( x + 5 ) ( x + 3 )

Similar questions