Math, asked by asheeshjha68, 1 year ago

2^2008-2^2007-2^2006-2^2005=k*2^2005 find value of k

And explain it well with giving a smiling emoji to get brainiest

Answers

Answered by JagannatnVenkat
18

Answer:

The value of k is 1

Step-by-step explanation:

Refer the picture above for the solution

Attachments:
Answered by pulakmath007
0

 \sf  {2}^{2008} -  {2}^{2007} - {2}^{2006} - {2}^{2005} = k \times {2}^{2005} value of k = 1

Given :  \sf  {2}^{2008} -  {2}^{2007} - {2}^{2006} - {2}^{2005} = k \times {2}^{2005}

To find : The value of k

Solution :

Step 1 of 2 :

Write down the given equation

The given equation is

 \sf  {2}^{2008} -  {2}^{2007} - {2}^{2006} - {2}^{2005} = k \times {2}^{2005}

Step 2 of 2 :

Find the value of k

 \sf  {2}^{2008} -  {2}^{2007} - {2}^{2006} - {2}^{2005} = k \times {2}^{2005}

 \sf   \implies \:  {2}^{3} .{2}^{2005} -   {2}^{2} .{2}^{2005} -2. {2}^{2005} - {2}^{2005} = k \times {2}^{2005}

 \sf   \implies \:  8.{2}^{2005} -   4.{2}^{2005} -2. {2}^{2005} - {2}^{2005} = k \times {2}^{2005}

 \sf   \implies \:  (8 - 4 - 2 - 1){2}^{2005} = k \times {2}^{2005}

 \sf   \implies \:  {2}^{2005} = k \times {2}^{2005}

 \sf   \implies \:  k \times {2}^{2005} = {2}^{2005}

 \sf   \implies \:  k  = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If g(x)=−7x−1 and h(x)=2x+3, what is −3(g+h)(x)?

https://brainly.in/question/26186966

2. let f and g be thwe function from the set of integers to itself defined by f(X) =2x +1 and g (X)=3x+4 then the compositi...

https://brainly.in/question/22185565

Similar questions