Math, asked by rajaramyadavic2010, 10 months ago

2. 25x2 + 50x + 12 = 0. samikaran ke mul sutra dwara gyat kijiye​

Answers

Answered by BrainlyPopularman
22

GIVEN :

A quadratic equation 25x² + 50x + 12 = 0.

TO FIND :

Roots = ?

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 have two roots , then roots are –

 \\ \longrightarrow \large{ \boxed{ \sf x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  }} \\

• Here –

 \\  \sf \:  \:  \:  \: { \huge{.}} \:  \: a = 25 \\

 \\  \sf \:  \:  \:  \: { \huge{.}} \:  \: b = 50 \\

 \\  \sf \:  \:  \:  \: { \huge{.}} \:  \: c = 12 \\

• put the values –

 \\ \implies \sf x =  \dfrac{ - (50) \pm \sqrt{ {(50)}^{2}  - 4(25)(12)} }{2(25)} \\

 \\ \implies \sf x =  \dfrac{ - 50 \pm \sqrt{ 2500 - 1200}}{2(25)} \\

 \\ \implies \sf x =  \dfrac{ - 50 \pm \sqrt{ 1300}}{50} \\

 \\ \implies \sf x =  \dfrac{ - 50 \pm 10 \sqrt{ 13}}{50} \\

 \\ \implies \sf x =  \dfrac{- 5\pm  \sqrt{ 13}}{5} \\

 \\ \implies \sf x =  \dfrac{ - 5 +   \sqrt{ 13}}{5} \: , \:  \frac{ - 5 -  \sqrt{13} }{5}  \\

• Hence the roots are  \:  \:  \sf  \dfrac{ - 5 +   \sqrt{ 13}}{5} \:,  \:  \dfrac{ - 5 -  \sqrt{13} }{5}  \\

Similar questions