2√2sin10(sec5/2+cos40/sin5-2sin35)
Answers
Answered by
16
Let the expression to be evaluated be x.
Since sin10=2sin5cos5, you get:
22–√(sin5+2cos40cos5−4sin35sin5cos5)=22–√(sin5+2cos40cos5−2sin35sin10)
We can write:
2cos40cos5=cos45+cos35
2sin35sin10=cos25−cos45
Hence,
x=22–√(sin5+cos45+cos35+cos45−cos25)=22–√(2–√+sin5+cos35−cos25)
Since
cos35−cos25=−2sin30sin5=−sin5
The final answer is 4
ritu5151:
give me photo,sir
Answered by
2
Answer:
Step-by-step explanation:
Attachments:
Similar questions