Math, asked by Anonymous, 2 months ago

2.
+3=0
 \frac{2}{x}  +  \frac{2}{3y}  =  \frac{1}{6}   \\   \frac{3}{x}  +  \frac{2}{y }  = 0

Answers

Answered by BrainlyTwinklingstar
2

Answer

{\sf \dashrightarrow \dfrac{2}{x} + \dfrac{2}{3y} = \dfrac{1}{6} \: \: --- (i)}

{\sf \dashrightarrow \dfrac{3}{x} + \dfrac{2}{y} = 0 \: \: --- (ii)}

Let,

{\sf \dashrightarrow \dfrac{1}{x} = u}

{\sf \dashrightarrow \dfrac{1}{y} = v}

Now, the equations become

{\sf \dashrightarrow 2u + \dfrac{2y}{3} = \dfrac{1}{6}}

{\sf \dashrightarrow 3u + 2v = 0}

Now, from equation (ii),

{\sf \dashrightarrow 3u + 2v = 0}

{\sf \dashrightarrow 3u = -2v}

{\sf \dashrightarrow u = \dfrac{-2v}{3}}

Now, let's find the value of v by first equation.

{\sf \dashrightarrow 2 \bigg( \dfrac{-2v}{3} \bigg) + \dfrac{2v}{3} = \dfrac{1}{6}}

{\sf \dashrightarrow \dfrac{-4v}{3} + \dfrac{2v}{3} = \dfrac{1}{6}}

{\sf \dashrightarrow \dfrac{-2v}{3} = \dfrac{1}{6}}

{\sf \dashrightarrow -2v = \dfrac{3}{6}}

{\sf \dashrightarrow -2v = \dfrac{1}{2}}

{\sf \dashrightarrow -v = \dfrac{1}{4}}

{\sf \dashrightarrow v = \dfrac{-1}{4}}

Now, let's find the value of u.

{\sf \dashrightarrow u = \dfrac{-2v}{3}}

{\sf \dashrightarrow u = \dfrac{-2 \bigg( \dfrac{-1}{4} \bigg)}{3}}

{\sf \dashrightarrow u = \dfrac{\dfrac{1}{2}}{3}}

{\sf \dashrightarrow u = \dfrac{1}{6}}

Now, let's find the value of x.

{\sf \dashrightarrow \dfrac{1}{x} = u}

{\sf \dashrightarrow \dfrac{1}{x} = \dfrac{1}{6}}

{\sf \dashrightarrow x = 6}

Now, let's find the value of y.

{\sf \dashrightarrow \dfrac{1}{y} = v}

{\sf \dashrightarrow \dfrac{1}{y} = \dfrac{-1}{4}}

{\sf \dashrightarrow y = (-4)}

Hence, the values of x and y are 6 and (-4) respectively.

Similar questions