Math, asked by AggressiveKiller, 9 months ago

2+√3 + 1 divided by 2+√3​

Answers

Answered by Anonymous
2

2 + √3 + 1 / 2 + √3

Take it as 2 + √3 / 2 + √3 + 1/ 2 +√3

= 1 + 1/2 + √3

rationalise denomatinator

1 + 2 - √3 / 4 - 3

= 3 -√3

or √3 (√3 -1) is the answer.

Answered by Anonymous
3

\bigstar Question:

Find the value of :

  •  \frac{(2 +  \sqrt{3} + 1) }{(2 +  \sqrt{3}) }

\bigstarGiven:

  •  \frac{(2 +  \sqrt{3} + 1) }{(2 +  \sqrt{3}) }

\bigstarTo find:

The value of :

\frac{(2 +  \sqrt{3} + 1) }{(2 +  \sqrt{3}) }

\bigstar Solution:

\frac{(2 +  \sqrt{3} + 1) }{(2 +  \sqrt{3}) }  \\  =  \frac{(3 +  \sqrt{3}) }{(2 +  \sqrt{3}) }

 =  \frac{(3)(2) + 3( -  \sqrt{3} ) + 2( \sqrt{3} ) +  \sqrt{3}  \times ( -  \sqrt{3}) }{ ({2})^{2}  -  ({ \sqrt{3}) }^{2} }

Now, we have to Rationalise the denominator to get a rational number as the denominator.

 =  \frac{(3 +  \sqrt{3} )(2 -  \sqrt{3} )}{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }  \\

( By using - = ( a + b ) ( a - b ))

 =  \frac{6 -  3\sqrt{3} + 2 \sqrt{3}   - 3}{4 - 3}

 =  \frac{6 -  \sqrt{3} - 3 }{1}

 = 3 -  \sqrt{3}

\bigstarAnswer:

  • Therefore, the answer is 3 - √3
Similar questions