Math, asked by MrzShizuka360, 10 hours ago

(2^3×2) ^2=

2^6


2^3


2^8​

Attachments:

Answers

Answered by sanskritamsinghsingh
2

Answer:

2^8

Step-by-step explanation:

(2^3×2^1)^2

(2^3+1)^2

(2^4)^2

2^4×2

2^8

I hope this is very helpful for u Mark me as a brainlist

Answered by Anonymous
52

Answer:

Question :

 \dashrightarrow\sf{({2}^{3} \times 2)}^{2}

\begin{gathered}\end{gathered}

Solution :

 \dashrightarrow\sf{({2}^{3} \times 2)}^{2}

Using law of exponent {\bf{{a}^{m} \times {a}^{n} = {a}^{m + n}}}

 \dashrightarrow\sf{({2}^{3} \times {2}^{1})}^{2}

 \dashrightarrow\sf{({2}^{3+1})}^{2}

 \dashrightarrow\sf{({2}^{4})}^{2}

Again, using law of exponent {\bf{({a}^{m})^{n} = {a}^{mn}}}

 \dashrightarrow\sf{({2}^{4})}^{2}

 \dashrightarrow\sf{({2})^{4 \times 2}}

 \dashrightarrow\sf{({2})^{8}}

{\bigstar \: {\small\underline{\boxed{\sf{\red{Answer = (2)^8}}}}}}

∴ The option 3) 2⁸ is the correct answer.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Learn More :

☼ Algebraic identities:-

  • (a+b)²+(a-b)² = 2a²+2b²
  • (a+b)²-(a-b)² = 4ab
  • (a+b)(a -b) = a²-b²
  • (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
  • (a-b)³ = a³-b³-3ab(a-b)
  • (a³+b³) = (a+b)(a²-ab+b²)
  • a²+b² = (a+b)²-2ab
  • a³-b³ = (a-b)(a²+ab +b²)
  • If a + b + c = 0 then a³ + b³ + c³ = 3abc

☼ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • ↠ B - Brackets,
  • ↠ O - Order of powers or roots,
  • ↠ D - Division,
  • ↠ M - Multiplication 
  • ↠ A - Addition
  • ↠ S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

☼ BODMAS RULE :

↝ First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ↠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}
  • ↠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}
  • ↠ {\rm{({a}^{m})^{n} = {a}^{mn}}}
  • ↠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}
  • ↠ {\rm{{a}^{0} = 1}}
  • ↠ {\rm{{a}^{ - m} = {1/a}^{m}}}
  • ↠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions