Math, asked by q1q1q, 1 year ago

√2+√3÷∛2-2√3=a+b√6
find the values of a and b in the following

Answers

Answered by jatinsaini1140
1

Answer:

√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following√2+√3÷∛2-2√3=a+b√6

find the values of a and b in the following

Step-by-step explanation:


q1q1q: good
Answered by welcome101
2

Answer:

  \frac{(\sqrt{2}  +  \sqrt{3} )}{ \sqrt[3]{2}  - 2 \sqrt{3} }  = a + b \sqrt{6}   \\   \frac{1 +  \sqrt{ \frac{3}{2} } }{ \sqrt{2} -  \sqrt{6}  }  \\ taking \: conjugate \: of \: denominator \\ \frac{1 +  \sqrt{ \frac{3}{2} } }{ \sqrt{2} -  \sqrt{6}  } \times    \frac{{ \sqrt{2}  +  \sqrt{6}  } }{{ \sqrt{2}  +   \sqrt{6}  } }  \\   \frac{ \sqrt{ {2} } + \sqrt{3}  +  \sqrt{6}   + 3 }{2 - 6}  \\  -  \frac{3 + ( \sqrt{2} +  \sqrt{3}   +  \sqrt{6} )}{4}  \\  \\ here \: a =  - \frac{3}{4}   \\ \\ and \: b =  -  \frac{1}{ \sqrt{6} } ( \frac{ \sqrt{2} +  \sqrt{3 }  +  \sqrt{6}  }{4} )


q1q1q: sorry bro
q1q1q: i follow you bro
welcome101: u can, thanks buddy
Similar questions