Math, asked by haris31, 1 year ago

2+√3/2-√3+2-√3/2+√3+√3-1/√3+1 simplify​


haris31: with solutions
haris31: if any one is online
haris31: Aditya please tell me the answer
haris31: with solutions
haris31: lovely pls find the answer
haris31: with solutions
haris31: if any one is online
haris31: pls find the answer
haris31: tell the answer
haris31: with solutions

Answers

Answered by dpskln22
31

Answer: 16-√3

Step-by-step explanation:

In attachment.

Hope it helps you. Please mark me as the brainliest.

Attachments:
Answered by gayatrikumari99sl
1

Answer:

16 - \sqrt{3} is the required value of \frac{2 + \sqrt{3} }{2 - \sqrt{3} }  + \frac{2 - \sqrt{3}}{2 + \sqrt{3} }  + \frac{\sqrt{3}-1 }{\sqrt{3}+1 }.

Step-by-step explanation:

Explanation:

Given in the question,  \frac{2 + \sqrt{3} }{2 - \sqrt{3} }  + \frac{2 - \sqrt{3}}{2 + \sqrt{3} }  + \frac{\sqrt{3}-1 }{\sqrt{3}+1 }.

Rationalization - An irrational number is rationalized, or changed into a number that can be stated as the ratio of two integers, through the process of rationalization.

We first rationalize the given numbers,

[\frac{2 + \sqrt{3} }{2 - \sqrt{3} } .\frac{2 + \sqrt{3} }{2 + \sqrt{3} }   ]+ [\frac{2 - \sqrt{3}}{2 + \sqrt{3} } . \frac{2 - \sqrt{3} }{2 - \sqrt{3} } ] + [\frac{\sqrt{3}-1 }{\sqrt{3}+1 }.\frac{\sqrt{3} -1}{\sqrt{3} -1} ]

Step 1:

We have, \frac{2 + \sqrt{3} }{2 - \sqrt{3} }  + \frac{2 - \sqrt{3}}{2 + \sqrt{3} }  + \frac{\sqrt{3}-1 }{\sqrt{3}+1 }.

On rationalizing we get,

[\frac{2 + \sqrt{3} }{2 - \sqrt{3} } .\frac{2 + \sqrt{3} }{2 + \sqrt{3} }   ]+ [\frac{2 - \sqrt{3}}{2 + \sqrt{3} } . \frac{2 - \sqrt{3} }{2 - \sqrt{3} } ] + [\frac{\sqrt{3}-1 }{\sqrt{3}+1 }.\frac{\sqrt{3} -1}{\sqrt{3} -1} ]

\frac{(2 + \sqrt{3} )(2 +\sqrt{3} )}{2^2 -(\sqrt{3} )^2}  + \frac{(2 -\sqrt{3} )^2}{2^2 - (\sqrt{3} )^2} + \frac{(\sqrt{3} -1)^2}{(\sqrt{3} )^2 -1}

[where a^2 -b^2 = (a+b)(a-b)]

\frac{4 +2\sqrt{3}+2\sqrt{3}  +3 }{4 -3} + \frac{4 - 2\sqrt{3}- 2\sqrt{3} +3 }{4 -3}   + \frac{3 -2\sqrt{3}  -1}{3 -1}

\frac{7 +4\sqrt{3} }{1} + \frac{7 -4 \sqrt{3} }{1}   + \frac{4 - 2\sqrt{3} }{2}

(7 + 4\sqrt{3} )+ (7 -4\sqrt{3} ) + (2 - \sqrt{3} )

Now, we open the brackets,

⇒7 + 4\sqrt{3} + 7 - 4\sqrt{3} + 2 - \sqrt{3}

⇒16 - \sqrt{3}

Final answer:

Hence, the 16 - \sqrt{3} is the required value of \frac{2 + \sqrt{3} }{2 - \sqrt{3} }  + \frac{2 - \sqrt{3}}{2 + \sqrt{3} }  + \frac{\sqrt{3}-1 }{\sqrt{3}+1 }.

#SPJ2

Similar questions