√2+√3/2√3-3√2=2-b√6
please help
Answers
Solution!!
(√2 + √3)/(3√2 - 2√3) = 2 - b√6
Rationalize the denominator.
(√2 + √3)/(3√2 - 2√3) × (3√2 + 2√3)/(3√2 + 2√3) = 2 - b√6
[(√2 + √3)(3√2 + 2√3)]/[(3√2 - 2√3)(3√2 + 2√3)] = 2 - b√6
Use (a - b)(a + b) = a² - b² to simplify the expression.
[(√2 + √3)(3√2 + 2√3)]/[(3√2)² - (2√3)²] = 2 - b√6
[(√2 + √3)(3√2 + 2√3)]/[9(2) - 4(3)] = 2 - b√6
[(√2 + √3)(3√2 + 2√3)]/[18 - 12] = 2 - b√6
[(√2 + √3)(3√2 + 2√3)]/[6] = 2 - b√6
Multiply the parentheses.
[6 + 2√6 + 3√6 + 6]/[6] = 2 - b√6
(12 + 5√6)/6 = 2 - b√6
Move the expression with the variable to the left-hand side and change its sign.
(12 + 5√6)/6 + b√6 = 2
Move the constant to the right-hand side and change its sign.
b√6 = 2 - (12 + 5√6)/6
Take the LCM.
b√6 = (12 - (12 + 5√6))/6
b√6 = (12 - 12 - 5√6)/6
b√6 = (-5√6)/6
b = (-5√6)/6 × √6
b = (-5)/6
b = -5/6