Math, asked by aditiaditi1722007, 2 months ago

2+√3/2-√3=a+b√3 find a and b

Answers

Answered by ImperialGladiator
8

Answer:

  • a = 7
  • b = 4

Explanation:

Given,

 \implies   \: \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}

Taking R. H. S. :-

 =  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }

Rationalising the denominator,

 =  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \dfrac{2  +  \sqrt{3}  }{2 +  \sqrt{3} }

Using the identity :- (a - b)(a + b) = - b²

 =  \dfrac{(2 +  \sqrt{3} )(2 +  \sqrt{3}) }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }

 =  \dfrac{4 + 2 \sqrt{3} + 2 \sqrt{3}  + 3 }{4 - 3}

 =   \dfrac{7 + 4 \sqrt{3} }{1}

 = 7 + 4 \sqrt{3}

Now,

 \implies \: 7 + 4 \sqrt{3}  = a +  b\sqrt{3}

On comparing,

 \therefore \: a =  7 \: { \rm \: and} \: b = 4

Similar questions