Math, asked by minu74singh, 1 month ago

2+√3/2-√3=a+b√3
please tell me​

Answers

Answered by Salmonpanna2022
4

Step-by-step explanation:

Question:-

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} } = a + b \sqrt{3}   \\  \\

To find:-

The value of a + b√3

Solution:-

Let's solve the given problem

We have,

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\

The denominator is 2-√3. Multiplying the numerator and denomination by 2+√3, we get

⟹ \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2  +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\

⟹ \frac{(2 +  \sqrt{3})(2 +  \sqrt{3}  )}{(2 -  \sqrt{3} )(2 +  \sqrt{3} )}  \\  \\

⬤ Applying Algebraic Identity

  • (a+b)(a+b) = (a+b)² = a²+b²+2ab to the numerator &
  • (a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{(2 +  \sqrt{3}  {)}^{2} }{(2 {)}^{2}  - ( \sqrt{3}  {)}^{2} }  \\  \\

⟹ \frac{(2 {) }^{2} + ( \sqrt{3}  {)}^{2}  + 2 \times 2 \times  \sqrt{3}  }{4 - 3}  \\  \\

⟹ \frac{4 +  \sqrt{3}  + 4 \sqrt{3} }{1}  \\  \\

⟹ \frac{7 + 4 \sqrt{3} }{1}  \\  \\

⟹7 + 4 \sqrt{3}  \\

∴ \: a + b \sqrt{3}  = 7 + 4 \sqrt{3}  \\  \\

On comparing, the value of:

 \mathrm{a = 7 \:  \: and \:  \: b = 4} \\  \\

Answer:-

 \mathrm{Hence,  \: the \: value \: of \: a = 7 \:  \: and \:  \: b = 4.} \\  \\

Used Formulae:-

  • (a+b)(a+b) = (a+b)² = a² + b² +2ab

  • (a-b)(a+b) = a² - b²

:)

Similar questions