Math, asked by smh198smh, 8 months ago

2+√3/2-√3=a+b√3 this is the question

Answers

Answered by mantu9000
0

We have:

\dfrac{2+\sqrt{3} }{2-\sqrt{3}} =a+b\sqrt{3}

We have to find the value of a and b.

Solution:

\dfrac{2+\sqrt{3} }{2-\sqrt{3}} =a+b\sqrt{3}

Rationalising numerator and denominator, we get

\dfrac{2+\sqrt{3} }{2-\sqrt{3}}\times  \dfrac{2+\sqrt{3} }{2+\sqrt{3}}=a+b\sqrt{3}

Using the trogonometric identity:

(a + b)(a - b) = a^2-b^2

\dfrac{(2+\sqrt{3})^2 }{2^2-\sqrt{3}^2}=a+b\sqrt{3}

Using the trogonometric identity:

(a+b)^2=a^2+2ab+b^2

\dfrac{4+4\sqrt{3} +3 }{4-3}=a+b\sqrt{3}

7+4\sqrt{3}=a+b\sqrt{3}

Comparing both sides, we get

a = 7 and b = 4

a = 7 and b = 4

Similar questions