Math, asked by WINTERKING, 11 months ago

(-2)^3 × (-2)^-6 = (-2)^2x-1 find the value of x​

Answers

Answered by Crazykid13
6

Answer:

x= -1

Step-by-step explanation:

by using rule of powers and exponents,

L.H.S:

(-2)^3*(-2)^-6=(-2)^(3-6)

which is , (-2)^-3

now since the bases of both LHS and RHS are equal,

we can equate the powers,

which implies that, -3=2x-1

solving the equation, x= -1

Answered by SteffiPaul
2

Given,

  • (-2)^3 * (-2)^{-6} = (-2)^{2x-1} is given.

To find,

  • We have to find the value of x.

Solution,

We can simply find the value of x by using the laws of exponents.

              (-2)^3 * (-2)^{-6} = (-2)^{2x-1}

   Using a^m * a^n = a^{m+n}, we get

                       (-2)^{3-6} = (-2)^{2x-1}

                        (-2)^{-3} = (-2)^{2x-1}

As we know, the same bases have the same powers, then equating the powers, we get

                            -3 = 2x-1

Transposing -1 from RHS to LHS, we get

                        -3 +1 = 2x

                            -2  = 2x

                         -2/2  = x

                             -1   = x

Hence, the value of x is -1 for (-2)^3 * (-2)^{-6} = (-2)^{2x-1}.

Similar questions
Math, 11 months ago