Math, asked by ishanarya30, 11 months ago

√2+√3/3√2+2√3=a-b√6
Find the value of a and b

Answers

Answered by Anonymous
4

Answer :-

a = 1

b = - 1/6

Explanation :-

Given :-

 \tt  \dfrac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } = a - b \sqrt{6}

To find :-

Values of a and b

Solution :-

 \tt  \dfrac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } = a - b \sqrt{6}

Consider LHS

 \tt  \dfrac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3}}

Rationalise the denominator.

The rationalising factor of 3√2 + 2√3 is 3√2 - 2√3. So multiply both numerator and denominator with rationalising factor.

 \tt   = \dfrac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3}} \times  \dfrac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3}  }

 \tt   = \dfrac{ \sqrt{2} +  \sqrt{3}(3 \sqrt{2} - 2 \sqrt{3})}{(3 \sqrt{2} + 2 \sqrt{3})(3 \sqrt{2} + 2 \sqrt{3}) }

 \tt   = \dfrac{ \sqrt{2}(3 \sqrt{2} - 2 \sqrt{3}) +  \sqrt{3}(3 \sqrt{2} - 2 \sqrt{3})}{ {(3 \sqrt{2})}^{2} -  {(2 \sqrt{3}) }^{2}   }

[Since (x + y)(x - y) = x² - y² ]

 \tt   = \dfrac{3(4) - 2 \sqrt{6} + 3 \sqrt{6} - 2(3)}{9(2)  -  4(3)}

 \tt   = \dfrac{12 - 2 \sqrt{6} + 3 \sqrt{6} - 6}{18  -  12}

 \tt   = \dfrac{6 - 2 \sqrt{6} + 3 \sqrt{6}}{6}

 \tt   = \dfrac{6  +  \sqrt{6}}{6}

 \tt   = \dfrac{6}{6} +  \dfrac{ \sqrt{6} }{6}

 \tt   = 1+  \dfrac{ \sqrt{6} }{6}

Now consider

 \bf  \dfrac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } = a - b \sqrt{6}

 \tt \implies 1 +  \dfrac{ \sqrt{6} }{6} = a - b \sqrt{6}

Comparing on both sides

  \tt a = 1

 \tt  - b \sqrt{6}  = \dfrac{ \sqrt{6} }{6}

Cancelling √6 on both sides

 \tt  - b  = \dfrac{1}{6}

 \tt b  =  - \dfrac{1}{6}

Similar questions