Math, asked by mohdamaan9809, 1 year ago

2√3-3√2/3√2+2√3=a+b√6

Answers

Answered by DaIncredible
19
Heya !!!
 \frac{2 \sqrt{3}  - 3 \sqrt{2} }{3 \sqrt{2} + 2 \sqrt{3}  }  = a + b \sqrt{6}  \\

L.H.S

On rationalizing the denominator we get,

 =  \frac{2 \sqrt{3}  - 3 \sqrt{2} }{3 \sqrt{2} + 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2} - 2 \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3} }  \\  \\

 \bf \: using \: the \: identity \\  \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 =  \frac{2 \sqrt{3} (3 \sqrt{2} - 2 \sqrt{3} ) - 3 \sqrt{2} (3 \sqrt{2} - 2 \sqrt{3} )  }{ {(3 \sqrt{2}) }^{2}  -  {(2 \sqrt{3}) }^{2} }  \\  \\  =  \frac{6 \sqrt{6} - 12 - 18  +  6 \sqrt{6}  }{18 - 12}  \\  \\  =  \frac{12 \sqrt{6} - 30 }{6}  \\  \\  =  \frac{6(2 \sqrt{6}  - 5)}{6}  \\  \\  = 2 \sqrt{6}  - 5

 \bf \: on \: comparing \: both \: the \: sides \: we \: get \\  \\ 2 \sqrt{6}  - 5 = a + b \sqrt{6}  \\  \\ a =  - 5 \:  :  \: b = 2

Hope this helps ☺

DaIncredible: on rationalizing we get, 4√3(7√5 + 3√3) - 6√5(7√5 + 3√3) / (7√5)^2 - (3√3)^2
mohdamaan9809: Full slove kr do plz
DaIncredible: 28√15 + 36 - 210 - 18√15 / 245 - 27
mohdamaan9809: Hum ask question daal rhe hai aap usme answer dena
DaIncredible: - 174 - 10√15 / 218
mohdamaan9809: Question laga diya hai
mohdamaan9809: Slove kr do ja kr usme
mohdamaan9809: Plzz
mohdamaan9809: Hello
mohdamaan9809: Kaha chali gayi
Answered by rohitkumargupta
20
\underline{\bf HELLO \: \: DEAR,}

<br />\bf \frac{2\sqrt{3} - 3\sqrt{2}}{3\sqrt{2} + 2\sqrt{3}} = a + b \sqrt{6} <br /><br />

\bf \frac{2\sqrt{3} - 3\sqrt{2}}{3\sqrt{2} + 2\sqrt{3}} * \frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} - 2\sqrt{3}}

\to \bf \frac{(6\sqrt{6} -12- 18+ 6\sqrt{6})}{(3\sqrt{2})^{2} - (2\sqrt{3})^{2}}

\to \bf \frac{- 12 - 18 + 12\sqrt{6}}{18 - 12}

\to \bf \frac{-30 +12 \sqrt6}{6}

\to \bf \frac{-30}{6} + \frac{12\sqrt{6}}{6}

\bf on \: \: comparing \: \: with \: \: BOTH \: \: SIDE

\bf we \: \: get

\bf (-5) + 2\sqrt{6} = a + b\sqrt{6}

\bf a = (-5) \: \: , \: \: b = (2)

\underline{\bf I \: \: HOPE \: \: ITS \: \: HELP \: \: YOU \: \: DEAR,<br />\: \: THANKS}

DaIncredible: great sir =D
rohitkumargupta: thank you!
Similar questions