Math, asked by isha91129, 5 hours ago

(-2/3)³×(-2/3)⁴ Evaluate​

Answers

Answered by zat123
2

Answer:

look at the picture for answer

Attachments:
Answered by IIMrVelvetII
12

Answer: \sf {(\frac{ - 2}{3})}^{3} \times {(\frac{ - 2}{3})}^{4}

Step-by-step explanation:

❍ Solution :-

\sf →{(\frac{ - 2}{3})}^{3} \times {(\frac{ - 2}{3})}^{4}

We know that,

\sf {a}^{m} \times {a}^{n} = {a}^{m + n}

\sf →{(\frac{ - 2}{3})}^{3 + 4}

\sf →{(\frac{ - 2}{3})}^{7}

\sf →\fbox{(\dfrac{ - 128}{2187})}

Hence, \sf {(\frac{ - 2}{3})}^{3} \times {(\frac{ - 2}{3})}^{4} is equal to (\dfrac{ - 128}{2187}).

 \qquad \qquad \underline{\sf{\bf{\orange{Laws} \: \green{of} \: \red{Exponent} \: :-}}}

\sf {a}^{m} \times {a}^{n} = {a}^{m + n}

\sf {a}^{m} \div {a}^{n} = {a}^{m - n}

\sf {{a}^{m}}^{n} = {a}^{mn}

\sf {a}^{ - x} = \frac{1}{{a}}^{x}

\sf {a}^{0} = 1

Similar questions