Math, asked by utkarshsingh81, 9 months ago

(-2/3)^-3*(-2/3)^-6=(-2/3)^3x​

Answers

Answered by Anonymous
4

Answer:

x=-3

Given:

\texttt{$(\dfrac{-2}{3})^{-3}\times(\dfrac{-2}{3})^{-6}=(\dfrac{-2}{3})^{3x}$}

To Find:

\textbf{Value\:of\:x}

Explanation:

\textsf{$(\dfrac{-2}{3})^{-3}\times(\dfrac{-2}{3})^{-6}=(\dfrac{-2}{3})^{3x}$}

\texttt{We know that if the base is same}\texttt{the power is added. }

\textsf{$(\dfrac{-2}{3})^{(-3+(-6))}=(\dfrac{-2}{3})^{3x}$}

\textsf{$(\dfrac{-2}{3})^{-9}=(\dfrac{-2}{3})^{3x}$}

\textsf{Comparing the powers on both sides}

\textsf{3x=-9}

\textsf{x=-3}

Additional Information:

\large\odot\:\:\textbf{If\:we\:have \:to\:multiply \:same}

\large\textbf{bases with different power}

\large\textbf{,we\:add\:the\:power\:keeping}

\textbf{the\:bases\:same}

\Large\textbf{\underline{Example}}

\textbf{Let\:us\:consider\:$a^b\:\times\:a^c$}

\textbf{where\:a,\:b\:and\:c\:are \:constants.}

\textbf{Here\:we\:will\:add\:the\:powers \:b\:and\:c}

\textbf{keeping\:the\:base\:a\:same.}

\large\textsf{$a^{(b+c)}$}

Similar questions