Math, asked by MysticalPowers, 3 months ago

ꜰɪɴᴅ ᴛʜᴇ ᴅɪꜱᴛᴀɴᴄᴇ ʙᴇᴛᴡᴇᴇɴ ᴛʜᴇ ꜰᴏʟʟᴏᴡɪɴɢ ᴘᴀɪʀꜱ ᴏꜰ ᴘᴏɪɴᴛꜱ:
(ɪ) (2, 3), (4, 1)
(ɪɪ) (-5, 7), (-1, 3)
(ɪɪɪ) (ᴀ, ʙ), (-ᴀ, -ʙ)

# ռօ ֆքǟʍʍɨռɢ​

Answers

Answered by Qᴜɪɴɴ
17

Formula for finding Distance between two points:

=  \sqrt{{(x2 - x1)}^{2}  +  {(y2 - y1)}^{2}  }

━━━━━━━━━━━━━━━

Q1.

Points :

  • 2,3
  • 4,1

Let,

  • x1 = 2
  • x2 = 4
  • y1 = 3
  • y2 = 1

Now by Distance formula:

Distance between them:-

 \sqrt{ {(4 - 2)}^{2}  +  {(1 - 3)}^{2} }

 =  \sqrt{ {2}^{2} +  {( - 2)}^{2}  }

 =  \sqrt{4 + 4}

 =  \sqrt{8}

 \red{\boxed{\bold{\large{= 2 \sqrt{2} units}}}}

━━━━━━━━━━━━━━━

Q2.

Points:-

  • -5 , 7
  • -1 , 3

Let,

  • x1 = -5
  • x2 = -1
  • y1 = 7
  • y2 = 3

Now by Distance formula:

Distance between them:-

 \sqrt{ {(-5 - (-1))}^{2}  +  {(3- 7)}^{2} }

 =  \sqrt{ {-4}^{2} +  {( -4)}^{2}  }

 =  \sqrt{16 + 16}

 =  \sqrt{32}

\red{\boxed{\bold{\large{ = 4 \sqrt{2} units}}}}

━━━━━━━━━━━━━━━

Q.3

Points :

  • A, B
  • -A , -B

Let,

  • x1 = A
  • x2= -A
  • y1 = B
  • y2 = -B

Now by Distance formula:

Distance between them:-

 \sqrt{ {(-A - A)}^{2}  +  {(-B- B)}^{2} }

 =  \sqrt{ {-2A}^{2} +  {( - 2B)}^{2}  }

 =  \sqrt{4{A}^{2} + 4{B}^{2}}

\red{\boxed{\bold{\large{ =  2 \sqrt{{A}^{2}+{B}^{2}units}}}}}

or,

 = 2 \sqrt{{(A - B)}^{2}+ 2AB} units

\red{\boxed{\bold{\large{ = 2 (A- B) \sqrt {2AB}units}}}}


MysticalPowers: Thank u so much
Similar questions