Math, asked by rp774782, 11 months ago

(2+√3)^4+(2-√3)^4=x+y√3 so find y​

Answers

Answered by codiepienagoya
0

Finding the value of y:

Step-by-step explanation:

\ Given  \ that:\\\\\ (2+\sqrt3)^4 + \ (2-\sqrt3)^4 \ = x+ y \sqrt3 \\\\\ find \ the \ value  \ of \ y:\\\\\ Solve:\\\\(2+\sqrt3)^4 + \ (2-\sqrt3)^4 \ = x+ y \sqrt3 \\\\((2+\sqrt3)^2)^2 + ((2-\sqrt3)^2)^2 \ = x + y \sqrt3 \\\\((2)^2+(\sqrt3)^2+2.2.\sqrt3))^2+((2)^2+(\sqrt3)^2-2.2.\sqrt3))^2 \ = x \ + \ y \sqrt3\\\\\\\\(4+3+4\sqrt3)^2+(4+3+4\sqrt3)^2 \ = x \ + \ y \sqrt3\\\\(7+4\sqrt3)^2+(7+4\sqrt3)^2 \ = x \ + \ y \sqrt3\\\\((7)^2+(4\sqrt3)^2+2.7.4\sqrt3)+((7)^2+(4\sqrt3)^2-2.7.4\sqrt3)\ = x \ + \ y \sqrt3\\\\ (49+48+56\sqrt3)+(49+48-56\sqrt3)\ = x \ + \ y \sqrt3\\\\ (97+56\sqrt3+97-56\sqrt3)\ = x \ + \ y \sqrt3\\\\(97+97)\ = x \ + \ y \sqrt3\\\\(194)\ = x \ + \ y \sqrt3\\\\\ (194 + 0\sqrt3)\ = x \ + \ y \sqrt3\\\\compairing \ the \ above \ value \\\\ x \ =  \ 194 \  \ and  \ y \ = \ 0

Learn more:

  • Finding the value of x: https://brainly.in/question/15601422#
  • Finding the value of x: https://brainly.in/question/12426251
Similar questions