Math, asked by jlohiya11, 9 months ago

2+√(−3)/4+√(−3)
Express the following in the form of a+ib, a, beR i=√(-1)

Answers

Answered by atahrv
80

Answer :

\large{\star\:\:\boxed{{\dfrac{11}{19}\:+\:\dfrac{2\sqrt{3}}{19}i}}\:\:\star}

Explanation :

Given :–

  • \dfrac{2\:+\sqrt{-3} }{4\:+\:\sqrt{-3} } is a Complex Number .

  • i\:=\:\sqrt{-1}

To Express :–

We have to express \dfrac{2\:+\sqrt{-3} }{4\:+\:\sqrt{-3} } in the form of a + ib .

Formula Used :–

  • \boxed{\bf{\star\:\:(a\:+\:b)(a\:-\:b)\:=\:a^2\:-\:b^2\:\:\star}}

Solution :–

We have ,

\implies\dfrac{2\:+\:\sqrt{-3} }{4\:+\:\sqrt{-3} }

\implies\dfrac{2\:+\:\sqrt{(-1)(3)} }{4\:+\:\sqrt{(-1)(3)} }

\implies\dfrac{2\:+\:(\sqrt{-1})\sqrt{3} }{4\:+\:(\sqrt{-1})\sqrt{3} }

Now , we know i = √(-1) .

Putting √(-1) as i :

\implies\dfrac{2\:+\:\sqrt{3}i }{4\:+\:\sqrt{3}i }

Now we will Rationalize the Denominator :

\implies\dfrac{(2\:+\:\sqrt{3}i)(4\:-\:\sqrt{3}i) }{(4\:+\:\sqrt{3}i)(4\:-\:\sqrt{3}i) }

\implies\dfrac{8\:-\:2\sqrt{3}i\:+\:4\sqrt{3}i\:-\:(\sqrt{3}i)^2  }{(4)^2\:-\:(\sqrt{3}i)^2 }

\implies\dfrac{8\:+\:2\sqrt{3}i\:-\:3i^2 }{16\:-\:3i^2 }\:\:-----\bf{(1)}

Now we know that ,  

i = √(-1)

Squaring Both Sides

i² = (-1)

Putting this value of i² in Equation(1) :-

\implies\dfrac{8\:+\:2\sqrt{3}i\:-\:3(-1) }{16\:-\:3(-1) }

\implies\dfrac{8\:+\:2\sqrt{3}i\:+\:3 }{16\:+\:3 }

\implies\dfrac{11\:+\:2\sqrt{3}i}{19}

Now separating both Terms :-

\implies\dfrac{11}{19}\:+\:\dfrac{2\sqrt{3}i}{19}

So we can write it as :

\implies(\dfrac{11}{19})\:+\:(\dfrac{2\sqrt{3}}{19})i

where, \bf{a\:=\:\dfrac{11}{19}\:and\:b\:=\:\dfrac{2\sqrt{3}}{19}} .

Answered by dp14380dinesh
18

\huge{\mathfrak{\underline{\red{Answer!}}}}

\frac{2 + \sqrt{3} \: i }{4 + \sqrt{3} \: i } = \frac{(2 + \sqrt{3}i)(4 - \sqrt{3}i) }{(4 + \sqrt{3}i)(4 - \sqrt{3}i) } =

\frac{8 + 3 + 2 \sqrt{3}i }{19} = \frac{11}{19} + \frac{2 \sqrt{3} }{19} i

Similar questions